ChipFind - документация

Электронный компонент: ATF-501P8-TR1

Скачать:  PDF   ZIP
Agilent ATF-501P8 High Linearity
Enhancement Mode
[1]
Pseudomorphic HEMT in
2x2 mm
2
LPCC
[3]
Package
Data Sheet
Description
Agilent Technologies's ATF-
501P8 is a single-voltage high
linearity, low noise E-pHEMT
housed in an 8-lead JEDEC-
standard leadless plastic chip
carrier (LPCC
[3]
) package. The
device is ideal as a medium-
power amplifier. Its operating
frequency range is from 400 MHz
to 3.9 GHz.
The thermally efficient package
measures only 2mm x 2mm x
0.75mm. Its backside
metalization provides excellent
thermal dissipation as well as
visual evidence of solder reflow.
The device has a Point MTTF of
over 300 years at a mounting
temperature of +85C. All devices
are 100% RF & DC tested.
Features
Single voltage operation
High Linearity and P1dB
Low Noise Figure
Excellent uniformity in product
specifications
Small package size: 2.0 x 2.0 x
0.75 mm
3
Point MTTF > 300 years
[2]
MSL-1 and lead-free
Tape-and-Reel packaging option
available
Specifications
2 GHz; 4.5V, 280 mA (Typ.)
45.5 dBm Output IP3
29 dBm Output Power at 1dB gain
compression
1 dB Noise Figure
15 dB Gain
14.5 dB LFOM
[4]
65% PAE
23
o
C/W thermal resistance
Applications
Front-end LNA Q2 and Q3, Driver or
Pre-driver Amplifier for Cellular/
PCS and WCDMA wireless
infrastructure
Driver Amplifier for WLAN, WLL/
RLL and MMDS applications
General purpose discrete E-pHEMT
for other high linearity applications
Pin Connections and
Package Marking
Note:
Package marking provides orientation and
identification:
"0P" = Device Code
"x" = Date code indicates the month of
manufacture.
Notes:
1. Enhancement mode technology employs a
single positive V
gs
, eliminating the need of
negative gate voltage associated with
conventional depletion mode devices.
2. Refer to reliability datasheet for detailed
MTTF data.
3. Conforms to JEDEC reference outline MO229
for DRP-N.
4. Linearity Figure of Merit (LFOM) is essentially
OIP3 divided by DC bias power.
Pin 1 (Source)
Pin 2 (Gate)
Pin 3
Pin 4 (Source)
Pin 8
Pin 7 (Drain)
Pin 6
Pin 5
0Px
Top View
Pin 8
Source
(Thermal/RF Gnd)
Pin 7 (Drain)
Pin 6
Pin 5
Pin 1 (Source)
Pin 2 (Gate)
Pin 3
Pin 4 (Source)
Bottom View
Attention:
Observe precautions for
handling electrostatic
sensitive devices.
ESD Machine Model (Class A)
ESD Human Body Model (Class 1B)
Refer to Agilent Application Note A004R:
Electrostatic Discharge Damage and Control.
2
ATF-501P8 Absolute Maximum Ratings
[1]
Absolute
Symbol
Parameter
Units
Maximum
V
DS
DrainSource Voltage
[2]
V
7
V
GS
GateSource Voltage
[2]
V
-5 to 0.8
V
GD
Gate Drain Voltage
[2]
V
-5 to 1
I
DS
Drain Current
[2]
A
1
I
GS
Gate Current
mA
12
P
diss
Total Power Dissipation
[3]
W
3.5
P
in max.
RF Input Power
dBm
30
T
CH
Channel Temperature
C
150
T
STG
Storage Temperature
C
-65 to 150
ch_b
Thermal Resistance
[4]
C/W
23
Notes:
1. Operation of this device in excess of any one
of these parameters may cause permanent
damage.
2. Assumes DC quiescent conditions.
3. Board (package belly) temperatureT
B
is 25
C.
Derate 43.5 mW/
C for T
B
> 69.5
C.
4. Channel-to-board thermal resistance
measured using 150
C Liquid Crystal
Measurement method.
Notes:
5. Distribution data sample size is 300 samples taken from 3 different wafers and 3 different lots.
Future wafers allocated to this product may have nominal values anywhere between the upper and
lower limits.
6. Measurements are made on production test board, which represents a trade-off between optimal
OIP3, P1dB and VSWR. Circuit losses have been de-embedded from actual measurements.
Figure 1. Typical IV curve
(Vgs = 0.01V) per step.
Vds (V)
Ids (mA)
0
6
1
2
3
4
5
800
700
600
500
400
300
200
100
0
Vgs=0.6V
Vgs=0.55V
Vgs=0.5V
Vgs=0.7V
Vgs=0.65V
Product Consistency Distribution Charts at 2 GHz, 4.5V, 200 mA
[5,6]
Figure 2. P1dB.
P1dB (dBm)
27.5
30.5
28
28.5
29
29.5
30
120
100
80
60
40
20
0
Cpk=1.76
Stdev=0.3
+3 Std
3 Std
Figure 3. PAE.
PAE (%)
45
85
55
65
75
120
100
80
60
40
20
0
Cpk=1.51
Stdev=3.38
+3 Std
3 Std
Figure 4. Gain.
GAIN (dB)
13
17
14
15
16
100
80
60
40
20
0
Cpk=1.61
Stdev=0.33
+3 Std
3 Std
Figure 5. OIP3.
OIP3 (dBm)
42
50
43
44
45
46
47
48
49
100
80
60
40
20
0
Cpk=1.1
Stdev=0.87
+3 Std
3 Std
3
ATF-501P8 Electrical Specifications
T
A
= 25
C, DC bias for RF parameters is Vds = 4.5V and Ids = 280 mA unless otherwise specified.
Symbol
Parameter and Test Condition
Units
Min.
Typ.
Max.
Vgs
Operational Gate Voltage
Vds = 4.5V, Ids = 280 mA
V
0.42
0.55
0.67
Vth
Threshold Voltage
Vds = 4.5V, Ids = 32 mA
V
--
0.33
--
Idss
Saturated Drain Current
Vds = 4.5V, Vgs = 0V
A
--
5
--
Gm
Transconductance
Vds = 4.5V, Gm =
Ids/Vgs;
mmho
--
1872
--
Vgs = Vgs1 Vgs2
Vgs1 = 0.55V, Vgs2 = 0.5V
Igss
Gate Leakage Current
Vds = 0V, Vgs = -4.5V
A
-30
-0.8
--
NF
Noise Figure
[1]
f = 2 GHz
dB
--
1
--
f = 900 MHz
dB
--
--
--
G
Gain
[1]
f = 2 GHz
dB
13.5
15
16.5
f = 900 MHz
dB
--
16.6
--
OIP3
Output 3
rd
Order Intercept Point
[1,2]
f = 2 GHz
dBm
43
45.5
--
f = 900 MHz
dBm
--
42
--
P1dB
Output 1dB Compressed
[1]
f = 2 GHz
dBm
27.5
29
--
f = 900 MHz
dBm
--
27.3
--
PAE
Power Added Efficiency
[1]
f = 2 GHz
%
50
65
--
f = 900 MHz
%
--
49
--
ACLR
Adjacent Channel Leakage
Offset BW = 5 MHz
dBc
--
63.9
--
Power Ratio
[1,3]
Offset BW = 10 MHz
dBc
--
64.1
--
Notes:
1. Measurements at 2 GHz obtained using production test board described in Figure 2 while measurement at 0.9GHz obtained from load pull tuner.
2. i ) 2 GHz OIP3 test condition: F1 = 2.0 GHz, F2 = 2.01 GHz and Pin = -5 dBm per tone.
ii ) 900 MHz OIP3 test condition: F1 = 900 MHz, F2 = 910 MHz and Pin = -5dBm per tone.
3. ACLR test spec is based on 3GPP TS 25.141 V5.3.1 (2002-06)
- Test Model 1
- Active Channels: PCCPCH + SCH + CPICH + PICH + SCCPCH + 64 DPCH (SF=128)
- Freq = 2140 MHz
- Pin = -5 dBm
- Channel Integrate Bandwidth = 3.84 MHz
4. Use proper bias, board, heatsinking and derating designs to ensure max channel temperature is not exceeded.
See absolute max ratings and application note for more details.
Figure 6. Block diagram of the 2 GHz production test board used for NF, Gain, OIP3 , P1dB and PAE measurements at 2 GHz. This circuit achieves a
trade-off between optimal OIP3, P1dB and VSWR. Circuit losses have been de-embedded from actual measurements.
Input
Output
50 Ohm
Transmission
Line and
Drain Bias T
(0.3 dB loss)
50 Ohm
Transmission
Line and
Drain Bias T
(0.3 dB loss)
Output
Matching
Circuit
_mag=0.69
_ang=-163
(0.9 dB loss)
Input
Matching
Circuit
_mag=0.79
_ang=-164
(1.1 dB loss)
DUT
4
Gamma Load and Source at Optimum OIP3 and P1dB Tuning Conditions
The device's optimum OIP3 and P1dB measurements were determined using a load pull system at 4.5V
280 mA and 4.5V 400 mA quiesent bias respectively:
Figure 3. Simplified schematic of production test board. Primary purpose is to show 15 Ohm series resistor placement in
gate supply. Transmission line tapers, tee intersections, bias lines and parasitic values are not shown.
Typical Gammas at Optimum OIP3 at 4.5V 280 mA
Optimized for maximum OIP3 at 4.5V 280 mA
Freq (GHz)
OIP3
Gain
P1dB
PAE
Gamma Source
Gamma Load
0.9
46.42
16.03
26.67
45.80
0.305 < -140
0.577 < 162
2.0
45.50
15.07
28.93
50.30
0.806 < -179.2
0.511 < 164
2.4
44.83
12.97
29.03
45.70
0.756 < -167
0.589 < -168
3.9
43.97
6.11
27.33
33.90
0.782 < -162
0.524 < -153
Typical Gammas at Optimum P1dB at 4.5V 280mA
Optimized for maximum P1dB at 4.5V 280 mA
Freq (GHz)
OIP3
Gain
P1dB
PAE
Gamma Source
Gamma Load
0.9
39.29
20.90
30.49
41.00
0.859 < 165
0.757 < 179
2.0
41.79
14.72
30.60
45.30
0.76 < -171
0.691 < -168
2.4
42.37
11.25
30.24
39.70
0.745 < -166
0.694 < -161
3.9
42.00
5.63
28.26
25.80
0.759 < -159
0.708 < -149
RF Input
2.2
F
Gate
Supply
Drain
Supply
15 Ohm
15 nH
1.8 nH
1.2 pF
50 Ohm
.02
50 Ohm
.02
110 Ohm
.03
110 Ohm
.03
1.2 pF
3.3 nH
RF Output
47 nH
2.2
F
DUT
Typical Gammas at Optimum OIP3 at 4.5V 400 mA
Optimized for maximum OIP3 at 4.5V 400 mA
Freq (GHz)
OIP3
Gain
P1dB
PAE
Gamma Source
Gamma Load
0.9
49.15
16.85
27.86
44.20
0.5852 < -135.80
0.4785 < 177.00
2.0
48.18
14.72
29.36
48.89
0.7267 < -175.37
0.7338 < 179.56
2.4
47.54
12.47
29.10
46.83
0.6155 < -171.71
0.5411 < -172.02
3.9
45.44
8.05
28.49
37.02
0.7888 < -148.43
0.5247 < -145.84
Typical Gammas at Optimum P1dB at 4.5V 400 mA
Optimized for maximum P1dB at 4.5V 400 mA
Freq (GHz)
OIP3
Gain
P1dB
PAE
Gamma Source
Gamma Load
0.9
41.78
21.84
31.23
49.97
0.7765 < 168.50
0.7589 < -175.09
2.0
43.28
14.83
31.03
44.78
0.8172 < -175.74
0.8011 < -165.75
2.4
42.46
11.90
30.66
41.00
0.8149 < -163.78
0.8042 < -161.79
3.9
42.94
7.70
29.56
33.06
0.8394 < -151.21
0.7826 < -149.00
5
ATF-501P8 Typical Performance Curves (at 25
C unless specified otherwise)
Tuned for Optimal OIP3 at 4.5V 280 mA
Figure 8. OIP3 vs. Idq and Vds at 2 GHz.
Idq (mA)
OIP3 (dBm)
200
640
240 280 320 360 400 440 480 520 560 600
55
50
45
40
35
30
4.5V
5.5V
3.5V
Figure 9. OIP3 vs. Idq and Vds at 0.9 GHz.
Idq (mA)
OIP3 (dBm)
200
640
240 280 320 360 400 440 480 520 560 600
55
50
45
40
35
30
4.5V
5.5V
3.5V
Figure 10. P1dB vs. Idq and Vds at 2 GHz.
Idq (mA)
P1dB (dBm)
200
640
240 280 320 360 400 440 480 520 560 600
35
30
25
20
15
4.5V
5.5V
3.5V
Figure 11. P1dB vs. Idq and Vds at 0.9 GHz.
Idq (mA)
P1dB (dBm)
200
640
240 280 320 360 400 440 480 520 560 600
35
30
25
20
15
4.5V
5.5V
3.5V
Figure 12. Gain vs. Idq and Vds at 2 GHz.
Idq (mA)
GAIN (dB)
200
640
240 280 320 360 400 440 480 520 560 600
25
20
15
10
5
0
4.5V
5.5V
3.5V
Figure 13. Gain vs. Idq and Vds at 0.9 GHz.
Idq (mA)
GAIN (dB)
200
640
240 280 320 360 400 440 480 520 560 600
25
20
15
10
5
0
4.5V
5.5V
3.5V
Figure 14. PAE vs. Idq and Vds at 2 GHz.
Idq (mA)
PAE (%)
200
640
240 280 320 360 400 440 480 520 560 600
60
50
40
30
20
10
0
4.5V
5.5V
3.5V
Figure 15. PAE vs. Idq and Vds at 0.9 GHz.
Idq (mA)
PAE (%)
200
640
240 280 320 360 400 440 480 520 560 600
60
50
40
30
20
10
0
4.5V
5.5V
3.5V