ChipFind - документация

Электронный компонент: AT45DB041

Скачать:  PDF   ZIP
1
Features
Single 2.7V - 3.6V Supply
Serial Interface Architecture
Page Program Operation
Single Cycle Reprogram (Erase and Program)
2048 Pages (264 Bytes/Page) Main Memory
Two 264-Byte SRAM Data Buffers Allows Receiving of Data
While Reprogramming of Non-Volatile Memory
Internal Program and Control Timer
Fast Page Program Time 7 ms Typical
120



s Typical Page to Buffer Transfer Time
Low Power Dissipation
4 mA Active Read Current Typical
8



A CMOS Standby Current Typical
5 MHz Max Clock Frequency
Hardware Data Protection Feature
Serial Peripheral Interface (SPI) Compatible Modes 0 and 3
CMOS and TTL Compatible Inputs and Outputs
Commercial and Industrial Temperature Ranges
Description
The AT45DB041 is a 2.7-volt only, serial interface Flash memory suitable for in-sys-
tem reprogramming. Its 4,325,376 bits of memory are organized as 2048 pages of
264-bytes each. In addition to the main memory, the AT45DB041 also contains two
SRAM data buffers of 264-bytes each. The buffers allow receiving of data while a
page in the main memory is being reprogrammed. Unlike conventional Flash memo-
ries that are accessed randomly with multiple address lines and a parallel interface,
the DataFlash uses a serial interface to sequentially access its data. The simple serial
interface facilitates hardware layout, increases system reliability, minimizes switching
4-Megabit
2.7-volt Only
Serial
DataFlash
AT45DB041
Rev. 0669D07/98
Pin Configurations
Pin Name
Function
CS
Chip Select
SCK
Serial Clock
SI
Serial Input
SO
Serial Output
WP
Hardware Page Write
Protect Pin
RESET
Chip Reset
RDY/BUSY
Ready/Busy
PLCC
5
6
7
8
9
10
11
12
13
29
28
27
26
25
24
23
22
21
SCK
SI
SO
NC
NC
NC
NC
NC
NC
WP
RESET
RDY/BUSY
NC
NC
NC
NC
NC
NC
4
3
2
1
32
31
30
14
15
16
17
18
19
20
NC
NC
DC
DC
NC
NC
NC
CS
NC
NC
GND
VCC
NC
NC
TSOP Top View
Type 1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
28
27
26
25
24
23
22
21
20
19
18
17
16
15
RDY/BUSY
RESET
WP
NC
NC
VCC
GND
NC
NC
NC
CS
SCK
SI
SO
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
SOIC
1
2
3
4
5
6
7
8
9
10
11
12
13
14
28
27
26
25
24
23
22
21
20
19
18
17
16
15
GND
NC
NC
CS
SCK
SI
SO
NC
NC
NC
NC
NC
NC
NC
VCC
NC
NC
WP
RESET
RDY/BUSY
NC
NC
NC
NC
NC
NC
NC
NC
CBGA Top View
Through Package
A
B
C
D
E
1
2
3
4
5
NC
NC
NC
NC
NC
VCC
WP
RESET
NC
NC
GND
RDY/BSY
SI
NC
NC
SCK
CS
SO
NC
NC
NC
NC
NC
NC
(continued)
Note: PLCC package pins 16
and 17 are DON'T CONNECT.
AT45DB041
2
noise, and reduces package size and active pin count. The
device is optimized for use in many commercial and indus-
trial applications where high density, low pin count, low
voltage, and low power are essential. Typical applications
for the DataFlash are digital voice storage, image storage,
and data storage. The device operates at clock frequencies
up to 5 MHz with a typical active read current consumption
of 4 mA.
To allow for simple in-system reprogrammability, the
AT45DB041 does not require high input voltages for pro-
gramming. The device operates from a single power sup-
p ly , 2 . 7 V t o 3 . 6 V , f o r b o t h t h e p r o g r a m a n d r e a d
operations. The AT45DB041 is enabled through the chip
select pin (CS) and accessed via a three-wire interface
consisting of the Serial Input (SI), Serial Output (SO), and
the Serial Clock (SCK).
All programming cycles are self-timed, and no separate
erase cycle is required before programming.
Block Diagram
Device Operation
The device operation is controlled by instructions from the
host processor. The list of instructions and their associated
opcodes are contained in Table 1 and Table 2. A valid
instruction starts with the falling edge of CS followed by the
appropriate 8-bit opcode and the desired buffer or main
memory address location. While the CS pin is low, toggling
the SCK pin controls the loading of the opcode and the
desired buffer or main memory address location through
the SI (serial input) pin. All instructions, addresses, and
data are transferred with the most significant bit (MSB) first.
Read
By specifying the appropriate opcode, data can be read
from the main memory or from either one of the two data
buffers.
MAIN MEMORY PAGE READ: A main memory read allows
the user to read data directly from any one of the 2048
pages in the main memory, bypassing both of the data buff-
ers and leaving the contents of the buffers unchanged. To
start a page read, the 8-bit opcode, 52H, is followed by 24
address bits and 32 don't care bits. In the AT45DB041, the
first four address bits are reserved for larger density
devices (see Notes on page 8), the next 11 address bits
(PA10-PA0) specify the page address, and the next nine
address bits (BA8-BA0) specify the starting byte address
within the page. The 32 don't care bits which follow the 24
address bits are sent to initialize the read operation. Fol-
lowing the 32 don't care bits, additional pulses on SCK
result in serial data being output on the SO (serial output)
pin. The CS pin must remain low during the loading of the
opcode, the address bits, and the reading of data. When
the end of a page in main memory is reached during a main
memory page read, the device will continue reading at the
beginning of the same page. A low to high transition on the
CS pin will terminate the read operation and tri-state the
SO pin.
BUFFER READ: Data can be read from either one of the
two buffers, using different opcodes to specify which buffer
to read from. An opcode of 54H is used to read data from
buffer 1, and an opcode of 56H is used to read data from
buffer 2. To perform a buffer read, the eight bits of the
opcode must be followed by 15 don't care bits, nine
address bits, and eight don't care bits. Since the buffer size
is 264-bytes, nine address bits (BFA8-BFA0) are required
to specify the first byte of data to be read from the buffer.
FLASH MEMORY ARRAY
PAGE (264 BYTES)
BUFFER 2 (264 BYTES)
BUFFER 1 (264 BYTES)
I/O INTERFACE
SCK
CS
RESET
V
CC
GND
RDY/BUSY
WP
SO
SI
AT45DB041
3
The CS pin must remain low during the loading of the
opcode, the address bits, the don't care bits, and the read-
ing of data. When the end of a buffer is reached, the device
will continue reading back at the beginning of the buffer. A
low to high transition on the CS pin will terminate the read
operation and tri-state the SO pin.
MAIN MEMORY PAGE TO BUFFER TRANSFER: A page
of data can be transferred from the main memory to either
buffer 1 or buffer 2. An 8-bit opcode, 53H for buffer 1 and
55H for buffer 2, is followed by the four reserved bits, 11
address bits (PA10-PA0) which specify the page in main
memory that is to be transferred, and nine don't care bits.
The CS pin must be low while toggling the SCK pin to load
the opcode, the address bits, and the don't care bits from
the SI pin. The transfer of the page of data from the main
memory to the buffer will begin when the CS pin transitions
from a low to a high state. During the transfer of a page of
data (t
XFR
), the status register can be read to determine
whether the transfer has been completed or not.
MAIN MEMORY PAGE TO BUFFER COMPARE: A page of
data in main memory can be compared to the data in buffer
1 or buffer 2. An 8-bit opcode, 60H for buffer 1 and 61H for
buffer 2, is followed by 24 address bits consisting of the
four reserved bits, 11 address bits (PA10-PA0) which spec-
ify the page in the main memory that is to be compared to
the buffer, and nine don't care bits. The loading of the
opcode and the address bits is the same as described pre-
viously. The CS pin must be low while toggling the SCK pin
to load the opcode, the address bits, and the don't care bits
from the SI pin. On the low to high transition of the CS pin,
the 264 bytes in the selected main memory page will be
compared with the 264 bytes in buffer 1 or buffer 2. During
this time (t
XFR
), the status register will indicate that the part
is busy. On completion of the compare operation, bit 6 of
the status register is updated with the result of the com-
pare.
Program
BUFFER WRITE: Data can be shifted in from the SI pin
into either buffer 1 or buffer 2. To load data into either
buffer, an 8-bit opcode, 84H for buffer 1 or 87H for buffer 2,
is followed by 15 don't care bits and nine address bits
(BFA8-BFA0). The nine address bits specify the first byte in
the buffer to be written. The data is entered following the
address bits. If the end of the data buffer is reached, the
device will wrap around back to the beginning of the buffer.
Data will continue to be loaded into the buffer until a low to
high transition is detected on the CS pin.
BUFFER TO MAIN MEMORY PAGE PROGRAM WITH
BUILT-IN ERASE:
Data written into either buffer 1 or buffer
2 can be programmed into the main memory. An 8-bit
opcode, 83H for buffer 1 or 86H for buffer 2, is followed by
the four reserved bits, 11 address bits (PA10-PA0) that
specify the page in the main memory to be written, and
nine additional don't care bits. When a low to high transition
occurs on the CS pin, the part will first erase the selected
page in main memory to all 1s and then program the data
stored in the buffer into the specified page in the main
memory. Both the erase and the programming of the page
are internally self timed and should take place in a maxi-
mum time of t
EP
. During this time, the status register will
indicate that the part is busy.
BUFFER TO MAIN MEMORY PAGE PROGRAM WITH-
OUT BUILT-IN ERASE:
A previously erased page within
main memory can be programmed with the contents of
either buffer 1 or buffer 2. An 8-bit opcode, 88H for buffer 1
or 89H for buffer 2, is followed by the four reserved bits, 11
address bits (PA10-PA0) that specify the page in the main
memory to be written, and nine additional don't care bits.
When a low to high transition occurs on the CS pin, the part
will program the data stored in the buffer into the specified
page in the main memory. It is necessary that the page in
main memory that is being programmed has been previ-
ously programmed to all 1s (erased state). The program-
ming of the page is internally self timed and should take
place in a maximum time of t
P
. During this time, the status
register will indicate that the part is busy.
MAIN MEMORY PAGE PROGRAM: This operation is a
combination of the Buffer Write and Buffer to Main Memory
Page Program with Built-In Erase operations. Data is first
shifted into buffer 1 or buffer 2 from the SI pin and then pro-
grammed into a specified page in the main memory. An 8-
bit opcode, 82H for buffer 1 or 85H for buffer 2, is followed
by the four reserved bits and 20 address bits. The 11 most
significant address bits (PA10-PA0) select the page in the
main memory where data is to be written, and the next nine
address bits (BFA8-BFA0) select the first byte in the buffer
to be written. After all address bits are shifted in, the part
will take data from the SI pin and store it in one of the data
buffers. If the end of the buffer is reached, the device will
wrap around back to the beginning of the buffer. When
there is a low to high transition on the CS pin, the part will
first erase the selected page in main memory to all 1s and
then program the data stored in the buffer into the specified
page in the main memory. Both the erase and the program-
ming of the page are internally self timed and should take
place in a maximum of time t
EP
. During this time, the status
register will indicate that the part is busy.
AUTO PAGE REWRITE: This mode is only needed if multi-
ple bytes within a page or multiple pages of data are modi-
fied in a random fashion. This mode is a combination of two
operations: Main Memory Page to Buffer Transfer and
Buffer to Main Memory Page Program with Built-In Erase.
A page of data is first transferred from the main memory to
buffer 1 or buffer 2, and then the same data (from buffer 1
or buffer 2) is programmed back into its original page of
main memory. An 8-bit opcode, 58H for buffer 1 or 59H for
buffer 2, is followed by the four reserved bits, 11 address
AT45DB041
4
bits (PA10-PA0) that specify the page in main memory to
be rewritten, and nine additional don't care bits. When a
low to high transition occurs on the CS pin, the part will first
transfer data from the page in main memory to a buffer and
then program the data from the buffer back into same page
of main memory. The operation is internally self-timed and
should take place in a maximum time of t
EP
. During this
time, the status register will indicate that the part is busy.
If the main memory is programmed or reprogrammed
sequentially page by page, then the programming algo-
rithm shown in Figure 1 is recommended. Otherwise, if
multiple bytes in a page or several pages are programmed
randomly in the main memory, then the programming algo-
rithm shown in Figure 2 is recommended.
STATUS REGISTER: The status register can be used to
determine the device's ready/busy status, the result of a
Main Memory Page to Buffer Compare operation, or the
device density. To read the status register, an opcode of
57H must be loaded into the device. After the last bit of the
opcode is shifted in, the eight bits of the status register,
starting with the MSB (bit 7), will be shifted out on the SO
pin during the next eight clock cycles. The five most-signifi-
cant bits of the status register will contain device informa-
tion, while the remaining three least-significant bits are
reserved for future use and will have undefined values.
After bit 0 of the status register has been shifted out, the
sequence will repeat itself (as long as CS remains low and
SCK is being toggled) starting again with bit 7. The data in
the status register is constantly updated, so each repeating
sequence will output new data.
Ready/busy status is indicated using bit 7 of the status reg-
ister. If bit 7 is a 1, then the device is not busy and is ready
to accept the next command. If bit 7 is a 0, then the device
is in a busy state. The user can continuously poll bit 7 of the
status register by stopping SCK once bit 7 has been output.
The status of bit 7 will continue to be output on the SO pin,
and once the device is no longer busy, the state of SO will
change from 0 to 1. There are six operations which can
cause the device to be in a busy state: Main Memory Page
to Buffer Transfer, Main Memory Page to Buffer Compare,
Buffer to Main Memory Page Program with Built-In Erase,
Buffer to Main Memory Page Program without Built-In
Erase, Main Memory Page Program, and Auto Page
Rewrite.
The result of the most recent Main Memory Page to Buffer
Compare operation is indicated using bit 6 of the status
register. If bit 6 is a 0, then the data in the main memory
page matches the data in the buffer. If bit 6 is a 1, then at
least one bit of the data in the main memory page does not
match the data in the buffer.
The device density is indicated using bits 5, 4, and 3 of the
status register. For the AT45DB041, the three bits are 0, 1,
and 1. The decimal value of these three binary bits does
not equate to the device density; the three bits represent a
combinational code relating to differing densities of Serial
DataFlash devices, allowing a total of eight different density
configurations.
Read/Program Mode Summary
The modes listed above can be separated into two groups
-- modes which make use of the flash memory array
(Group A) and modes which do not make use of the flash
memory array (Group B).
Group A modes consist of:
1.
Main memory page read
2.
Main memory page to buffer 1 (or 2) transfer
3.
Main memory page to buffer 1 (or 2) compare
4.
Buffer 1 (or 2) to main memory page program with
built-in erase
5.
Buffer 1 (or 2) to main memory page program with-
out built-in erase
6.
Main memory page program
7.
Auto page rewrite
Group B modes consist of:
1.
Buffer 1 (or 2) read
2.
Buffer 1 (or 2) write
3.
Status read
If a Group A mode is in progress (not fully completed) then
another mode in Group A should not be started. However,
during this time in which a Group A mode is in progress,
modes in Group B can be started.
This gives the Serial DataFlash the ability to virtually
accommodate a continuous data stream. While data is
being programmed into main memory from buffer 1, data
can be loaded into buffer 2 (or vice versa). See application
note AN-4 ("Using Atmel's Serial DataFlash") for more
details.
HARDWARE PAGE WRITE PROTECT: If the WP pin is
held low, the first 256 pages of the main memory cannot be
reprogrammed. The only way to reprogram the first 256
pages is to first drive the protect pin high and then use the
program commands previously mentioned.
Status Register Format
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
RDY/BUSY
COMP
0
1
1
X
X
X
AT45DB041
5
RESET: A low state on the reset pin (RESET) will terminate
the operation in progress and reset the internal state
machine to an idle state. The device will remain in the reset
condition as long as a low level is present on the RESET
pin. Normal operation can resume once the RESET pin is
brought back to a high level.
The device also incorporates an internal power-on reset
circuit; therefore, there are no restrictions on the RESET
pin during power-on sequences.
READY/BUSY: This open drain output pin will be driven
low when the device is busy in an internally self-timed oper-
ation. This pin, which is normally in a high state (through an
external pull-up resistor), will be pulled low during program-
ming operations, compare operations, and during page-to-
buffer transfers.
The busy status indicates that the Flash memory array and
one of the buffers cannot be accessed; read and write
operations to the other buffer can still be performed.
Power On/Reset State
When power is first applied to the device, or when recover-
ing from a reset condition, the device will default to SPI
mode 3. In addition, the SO pin will be in a high impedance
state, and a high to low transition on the CS pin will be
required to start a valid instruction. The SPI mode will be
automatically selected on every falling edge of CS by sam-
pling the inactive clock state.
Note:
1. After power is applied and V
CC
is at the minimum specified data sheet value, the system should wait 20 ms before an oper-
ational mode is started.
Absolute Maximum Ratings*
Temperature Under Bias ................................ -55
C to +125
C
*NOTICE:
Stresses beyond those listed under "Absolute
Maximum Ratings" may cause permanent dam-
age to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect device
reliability.
Storage Temperature ..................................... -65
C to +150
C
All Input Voltages
(including NC Pins)
with Respect to Ground ...................................-0.6V to +6.25V
All Output Voltages
with Respect to Ground .............................-0.6V to V
CC
+ 0.6V
DC and AC Operating Range
AT45DB041
Operating Temperature (Case)
Com.
0
C to 70
C
Ind.
-40
C to 85
C
V
CC
Power Supply
(1)
2.7V to 3.6V