ChipFind - документация

Электронный компонент: AT49SV802AT-90TI

Скачать:  PDF   ZIP

Document Outline

Features
Single Voltage Read/Write Operation: 1.65V to 1.95V
Access Time 90 ns
Sector Erase Architecture
Fifteen 32K Word (64K Bytes) Sectors with Individual Write Lockout
Eight 4K Word (8K Bytes) Sectors with Individual Write Lockout
Fast Byte/Word Program Time 12 s
Fast Sector Erase Time 300 ms
Suspend/Resume Feature for Erase and Program
Supports Reading and Programming from Any Sector by Suspending Erase
of a Different Sector
Supports Reading Any Byte/Word in the Non-suspending Sectors by Suspending
Programming of Any Other Byte/Word
Low-power Operation
12 mA Active
13 A Standby
Data Polling, Toggle Bit, Ready/Busy for End of Program Detection
RESET Input for Device Initialization
Sector Lockdown Support
TSOP and CBGA Package Options
Top or Bottom Boot Block Configuration Available
128-bit Protection Register
Minimum 100,000 Erase Cycles
Common Flash Interface (CFI)
Green (Pb/Halide-free) Packaging Option
1.
Description
The AT49SV802A(T) is a 1.8-volt 8-megabit Flash memory organized as 524,288
words of 16 bits each or 1,048,576 bytes of 8 bits each. The x16 data appears on
I/O0 - I/O15; the x8 data appears on I/O0 - I/O7. The memory is divided into 23 sec-
tors for erase operations. The AT49SV802A(T) is offered in a 48-lead TSOP and a
48-ball CBGA package. The device has CE and OE control signals to avoid any bus
contention. This device can be read or reprogrammed using a single power supply,
making it ideally suited for in-system programming.
The device powers on in the read mode. Command sequences are used to place the
device in other operation modes such as program and erase. The device has the
capability to protect the data in any sector (see
"Sector Lockdown" on page 7
).
To increase the flexibility of the device, it contains an Erase Suspend and Program
Suspend feature. This feature will put the erase or program on hold for any amount of
time and let the user read data from or program data to any of the remaining sectors
within the memory. The end of a program or an erase cycle is detected by the
READY/BUSY pin, Data Polling or by the toggle bit.
8-megabit
(512K x 16/
1M x 8)
1.8-volt Only
Flash Memory
AT49SV802A
AT49SV802AT

Preliminary
3522CFLASH3/05
2
3522CFLASH3/05
AT49SV802A(T) [Preliminary]
A six-byte command (Enter Single Pulse Program Mode) sequence to remove the requirement
of entering the three-byte program sequence is offered to further improve programming time.
After entering the six-byte code, only single pulses on the write control lines are required for writ-
ing into the device. This mode (Single Pulse Byte/Word Program) is exited by powering down
the device, or by pulsing the RESET pin low for a minimum of 500 ns and then bringing it back to
V
CC
. Erase, Erase Suspend/Resume and Program Suspend/Resume commands will not work
while in this mode; if entered they will result in data being programmed into the device. It is not
recommended that the six-byte code reside in the software of the final product but only exist in
external programming code.
The BYTE pin controls whether the device data I/O pins operate in the byte or word configura-
tion. If the BYTE pin is set at logic "1", the device is in word configuration, I/O0 - I/O15 are active
and controlled by CE and OE.
If the BYTE pin is set at logic "0", the device is in byte configuration, and only data I/O pins I/O0
- I/O7 are active and controlled by CE and OE. The data I/O pins I/O8 - I/O14 are tri-stated, and
the I/O15 pin is used as an input for the LSB (A-1) address function.
3
3522CFLASH3/05
AT49SV802A(T) [Preliminary]
2.
Pin Configurations
2.1
TSOP Top View (Type 1)
2.2
CBGA Top View (Ball Down)
Pin Name
Function
A0 - A18
Addresses
CE
Chip Enable
OE
Output Enable
WE
Write Enable
RESET
Reset
RDY/BUSY
READY/BUSY Output
I/O0 - I/O14
Data Inputs/Outputs
I/O15 (A-1)
I/O15 (Data Input/Output, Word Mode) A-1 (LSB Address Input, Byte Mode)
BYTE
Selects Byte or Word Mode
NC
No Connect
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
A15
A14
A13
A12
A11
A10
A9
A8
NC
NC
WE
RESET
NC
NC
RDY/BUSY
A18
A17
A7
A6
A5
A4
A3
A2
A1
A16
BYTE
GND
I/O15/A-1
I/O7
I/O14
I/O6
I/O13
I/O5
I/O12
I/O4
VCC
I/O11
I/O3
I/O10
I/O2
I/O9
I/O1
I/O8
I/O0
OE
GND
CE
A0
A
B
C
D
E
F
G
H
1
2
3
4
5
6
RDY/BUSY
NC
A18
NC
I/O2
I/O10
I/O11
I/O3
A3
A4
A2
A1
A0
CE
OE
VSS
A7
A17
A6
A5
I/O0
I/O8
I/O9
I/O1
WE
RST
NC
NC
I/O5
I/O12
VCC
I/O4
A9
A8
A10
A11
I/O7
I/O14
I/O13
I/O6
A13
A12
A14
A15
A16
BYTE
I/015/A-1
VSS
4
3522CFLASH3/05
AT49SV802A(T) [Preliminary]
3.
Block Diagram
4.
Device Operation
4.1
Read
The AT49SV802A(T) is accessed like an EPROM. When CE and OE are low and WE is high,
the data stored at the memory location determined by the address pins are asserted on the out-
puts. The outputs are put in the high impedance state whenever CE or OE is high. This dual-line
control gives designers flexibility in preventing bus contention.
4.2
Command Sequences
When the device is first powered on, it will be reset to the read or standby mode, depending
upon the state of the control line inputs. In order to perform other device functions, a series of
command sequences are entered into the device. The command sequences are shown in the
"Command Definition Table" on page 13
(I/O8 - I/O15 are don't care inputs for the command
codes). The command sequences are written by applying a low pulse on the WE or CE input
with CE or WE low (respectively) and OE high. The address is latched on the falling edge of CE
IDENTIFIER
REGISTER
STATUS
REGISTER
DATA
COMPARATOR
OUTPUT
MULTIPLEXER
OUTPUT
BUFFER
INPUT
BUFFER
COMMAND
REGISTER
DATA
REGISTER
Y-GATING
WRITE STATE
MACHINE
PROGRAM/ERASE
VOLTAGE SWITCH
CE
WE
OE
RESET
BYTE
RDY/BUSY
VCC
GND
Y-DECODER
X-DECODER
INPUT
BUFFER
ADDRESS
LATCH
I/O0 - I/O15/A-1
A0 - A18
MAIN
MEMORY
5
3522CFLASH3/05
AT49SV802A(T) [Preliminary]
or WE, whichever occurs last. The data is latched by the first rising edge of CE or WE. Standard
microprocessor write timings are used. The address locations used in the command sequences
are not affected by entering the command sequences.
4.3
Reset
A RESET input pin is provided to ease some system applications. When RESET is at a logic
high level, the device is in its standard operating mode. A low level on the RESET input halts the
present device operation and puts the outputs of the device in a high impedance state. When a
high level is reasserted on the RESET pin, the device returns to the read or standby mode,
depending upon the state of the control inputs.
4.4
Erasure
Before a byte/word can be reprogrammed, it must be erased. The erased state of memory bits is
a logical "1". The entire device can be erased by using the Chip Erase command or individual
sectors can be erased by using the Sector Erase command.
4.4.1
Chip Erase
The entire device can be erased at one time by using the six-byte chip erase software code.
After the chip erase has been initiated, the device will internally time the erase operation so that
no external clocks are required. The maximum time to erase the chip is t
EC
.
If the sector lockdown has been enabled, the chip erase will not erase the data in the sector that
has been locked out; it will erase only the unprotected sectors. After the chip erase, the device
will return to the read or standby mode.
4.4.2
Sector Erase
As an alternative to a full chip erase, the device is organized into 23 sectors (SA0 - SA22) that
can be individually erased. The Sector Erase command is a six-bus cycle operation. The sector
address is latched on the falling WE edge of the sixth cycle while the 30H data input command is
latched on the rising edge of WE. The sector erase starts after the rising edge of WE of the sixth
cycle. The erase operation is internally controlled; it will automatically time to completion. The
maximum time to erase a sector is t
SEC
. When the sector programming lockdown feature is not
enabled, the sector will erase (from the same Sector Erase command). An attempt to erase a
sector that has been protected will result in the operation terminating immediately.
4.5
Byte/Word Programming
Once a memory block is erased, it is programmed (to a logical "0") on a byte-by-byte or on a
word-by-word basis. Programming is accomplished via the internal device command register
and is a four-bus cycle operation. The device will automatically generate the required internal
program pulses.
Any commands written to the chip during the embedded programming cycle will be ignored. If a
hardware reset happens during programming, the data at the location being programmed will be
corrupted. Please note that a data "0" cannot be programmed back to a "1"; only erase opera-
tions can convert "0"s to "1"s. Programming is completed after the specified t
BP
cycle time. The
Data Polling feature or the Toggle Bit feature may be used to indicate the end of a program
cycle. If the erase/program status bit is a "1", the device was not able to verify that the erase or
program operation was performed successfully.