ChipFind - документация

Электронный компонент: ATtiny2313-16MI

Скачать:  PDF   ZIP

Document Outline

1
2543CAVR12/03
Features
Utilizes the AVR
RISC Architecture
AVR High-performance and Low-power RISC Architecture
120 Powerful Instructions Most Single Clock Cycle Execution
32 x 8 General Purpose Working Registers
Fully Static Operation
Data and Non-volatile Program and Data Memories
2K Bytes of In-System Self Programmable Flash
Endurance 10,000 Write/Erase Cycles
128 Bytes In-System Programmable EEPROM
Endurance: 100,000 Write/Erase Cycles
128 Bytes Internal SRAM
Programming Lock for Flash Program and EEPROM Data Security
Peripheral Features
One 8-bit Timer/Counter with Separate Prescaler and Compare Mode
One 16-bit Timer/Counter with Separate Prescaler, Compare and Capture Modes
Four PWM Channels
On-chip Analog Comparator
Programmable Watchdog Timer with On-chip Oscillator
USI Universal Serial Interface
Full Duplex USART
Special Microcontroller Features
debugWIRE On-chip Debugging
In-System Programmable via SPI Port
External and Internal Interrupt Sources
Low-power Idle, Power-down, and Standby Modes
Enhanced Power-on Reset Circuit
Programmable Brown-out Detection Circuit
Internal Calibrated Oscillator
I/O and Packages
18 Programmable I/O Lines
20-pin PDIP, 20-pin SOIC, and 32-pin MLF
Operating Voltages
1.8 - 5.5V (ATtiny2313)
Speed Grades
ATtiny2313V: 0 - 2 MHz @ 1.8 - 5.5V, 0 - 8 MHz @ 2.4 - 5.5V
ATtiny2313: 0 - 8 MHz @ 2.7 - 5.5V, 0 - 16 MHz @ 4.5 - 5.5V
Power Consumption Estimates
Active Mode
1 MHz, 1.8V: 300 A
32 kHz, 1.8V: 20 A (including oscillator)
Power-down Mode
< 0.2 A at 1.8V
8-bit
Microcontroller
with 2K Bytes
In-System
Programmable
Flash
ATtiny2313/V
Preliminary
Rev. 2543CAVR12/03
2
ATtiny2313/V
2543CAVR12/03
Pin Configurations
Figure 1. Pinout ATtiny2313
(RESET/dW)PA2
(RXD)PD0
(TXD)PD1
(XTAL2)PA1
(XTAL1)PA0
(CKOUT/XCK/INT0)PD2
(INT1)PD3
(T0)PD4
(OC0B/T1)PD5
GND
20
19
18
17
16
15
14
13
12
11
1
2
3
4
5
6
7
8
9
10
VCC
PB7(UCSK/SCK/PCINT7)
PB6(DO/PCINT6)
PB5(DI/SDA/PCINT5)
PB4(OC1B/PCINT4)
PB3(OC1A/PCINT3)
PB2(OC0A/PCINT2)
PB1(AIN1/PCINT1)
PB0(AIN0/PCINT0)
PD6(ICP)
MLF Top View
PDIP/SOIC
NOTE: Bottom pad should
be Soldered to ground.
1
2
3
4
5
6
7
8
24
23
22
21
20
19
18
17
32
31
30
29
28
27
26
25
9
10
11
12
13
14
15
16
NC
(XTAL2)PA1
(XTAL1)PA0
NC
NC
(CKOUT/XCK/INT0)PD2
NC
NC
NC
PB4(OC1B/PCINT4)
NC
NC
NC
PB3(OC1A/PCINT3)
PB2(OC0A/PCINT2)
NC
(INT1)PD3
(T0)PD4
(OC0B/T1)PD5
GND
(ICP)PD6
(AIN0/PCINT0)PB0
(AIN1/PCINT1)PB1
NC
PD1(TXD)
PD0(RXD)
PA2(RESET/dW)
VCC
PB7(UCSK/SCK/PCINT7)
PB6(DO/PCINT6)
PB5(DI/SDA/PCINT5)
NC
3
ATtiny2313/V
2543CAVR12/03
Overview
The ATtiny2313 is a low-power CMOS 8-bit microcontroller based on the AVR
enhanced RISC architecture. By executing powerful instructions in a single clock cycle,
the ATtiny2313 achieves throughputs approaching 1 MIPS per MHz allowing the system
designer to optimize power consumption versus processing speed.
Block Diagram
Figure 2. Block Diagram
PROGRAM
COUNTER
PROGRAM
FLASH
INSTRUCTION
REGISTER
GND
VCC
INSTRUCTION
DECODER
CONTROL
LINES
STACK
POINTER
SRAM
GENERAL
PURPOSE
REGISTER
ALU
STATUS
REGISTER
PROGRAMMING
LOGIC
SPI
8-BIT DATA BUS
XTAL1
XTAL2
RESET
INTERNAL
OSCILLATOR
OSCILLATOR
WATCHDOG
TIMER
TIMING AND
CONTROL
MCU CONTROL
REGISTER
MCU STATUS
REGISTER
TIMER/
COUNTERS
INTERRUPT
UNIT
EEPROM
USI
USART
ANALOG
COMP
ARA
T
O
R
DATA REGISTER
PORTB
DATA DIR.
REG. PORTB
DATA REGISTER
PORTA
DATA DIR.
REG. PORTA
PORTB DRIVERS
PB0 - PB7
PORTA DRIVERS
PA0 - PA2
DATA REGISTER
PORTD
DATA DIR.
REG. PORTD
PORTD DRIVERS
PD0 - PD6
ON-CHIP
DEBUGGER
INTERNAL
CALIBRATED
OSCILLATOR
4
ATtiny2313/V
2543CAVR12/03
The AVR core combines a rich instruction set with 32 general purpose working registers.
All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing
two independent registers to be accessed in one single instruction executed in one clock
cycle. The resulting architecture is more code efficient while achieving throughputs up to
ten times faster than conventional CISC microcontrollers.
The ATtiny2313 provides the following features: 2K bytes of In-System Programmable
Flash, 128 bytes EEPROM, 128 bytes SRAM, 18 general purpose I/O lines, 32 general
purpose working registers, a single-wire Interface for On-chip Debugging, two flexible
Timer/Counters with compare modes, internal and external interrupts, a serial program-
mable USART, Universal Serial Interface with Start Condition Detector, a programmable
Watchdog Timer with internal Oscillator, and three software selectable power saving
modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, and
interrupt system to continue functioning. The Power-down mode saves the register con-
tents but freezes the Oscillator, disabling all other chip functions until the next interrupt
or hardware reset. In Standby mode, the crystal/resonator Oscillator is running while the
rest of the device is sleeping. This allows very fast start-up combined with low-power
consumption.
The device is manufactured using Atmel's high density non-volatile memory technology.
The On-chip ISP Flash allows the program memory to be reprogrammed In-System
through an SPI serial interface, or by a conventional non-volatile memory programmer.
By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a mono-
lithic chip, the Atmel ATtiny2313 is a powerful microcontroller that provides a highly
flexible and cost effective solution to many embedded control applications.
The ATtiny2313 AVR is supported with a full suite of program and system development
tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Cir-
cuit Emulators, and Evaluation kits.
5
ATtiny2313/V
2543CAVR12/03
Pin Descriptions
VCC
Digital supply voltage.
GND
Ground.
Port A (PA2..PA0)
Port A is a 3-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port A output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port A pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port A also serves the functions of various special features of the ATtiny2313 as listed
on page 53.
Port B (PB7..PB0)
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port B output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port B pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port B also serves the functions of various special features of the ATtiny2313 as listed
on page 53.
Port D (PD6..PD0)
Port D is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port D output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port D pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port D also serves the functions of various special features of the ATtiny2313 as listed
on page 56.
RESET
Reset input. A low level on this pin for longer than the minimum pulse length will gener-
ate a reset, even if the clock is not running. The minimum pulse length is given in Table
15 on page 34. Shorter pulses are not guaranteed to generate a reset. The Reset Input
is an alternate function for PA2 and dW.
XTAL1
Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
XTAL1 is an alternate function for PA0.
XTAL2
Output from the inverting Oscillator amplifier. XTAL2 is an alternate function for PA1.
About Code
Examples
This documentation contains simple code examples that briefly show how to use various
parts of the device. These code examples assume that the part specific header file is
included before compilation. Be aware that not all C compiler vendors include bit defini-
tions in the header files and interrupt handling in C is compiler dependent. Please
confirm with the C compiler documentation for more details.
Disclaimer
Typical values contained in this data sheet are based on simulations and characteriza-
tion of other AVR microcontrollers manufactured on the same process technology. Min
and Max values will be available after the device is characterized.