ChipFind - документация

Электронный компонент: HGTG12N60B3D

Скачать:  PDF   ZIP
www.docs.chipfind.ru
background image
2001 Fairchild Semiconductor Corporation
HGTG12N60C3D Rev. B
HGTG12N60C3D
24A, 600V, UFS Series N-Channel IGBT
with Anti-Parallel Hyperfast Diode
The HGTG12N60C3D is a MOS gated high voltage switching
device combining the best features of MOSFETs and bipolar
transistors. The device has the high input impedance of a
MOSFET and the low on-state conduction loss of a bipolar
transistor. The much lower on-state voltage drop varies only
moderately between 25
o
C and 150
o
C. The IGBT used is the
development type TA49123. The diode used in anti parallel
with the IGBT is the development type TA49061.
The IGBT is ideal for many high voltage switching
applications operating at moderate frequencies where low
conduction losses are essential.
Formerly Developmental Type TA49117.
Symbol
Features
24A, 600V at T
C
= 25
o
C
Typical Fall Time . . . . . . . . . . . . . . . . 210ns at T
J
= 150
o
C
Short Circuit Rating
Low Conduction Loss
Hyperfast Anti-Parallel Diode
Packaging
JEDEC STYLE TO-247
Ordering Information
PART NUMBER
PACKAGE
BRAND
HGTG12N60C3D
TO-247
G12N60C3D
NOTE: When ordering, use the entire part number.
C
G
E
C
E
G
Fairchild CORPORATION IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS
4,364,073
4,417,385
4,430,792
4,443,931
4,466,176
4,516,143
4,532,534
4,587,713
4,598,461
4,605,948
4,620,211
4,631,564
4,639,754
4,639,762
4,641,162
4,644,637
4,682,195
4,684,413
4,694,313
4,717,679
4,743,952
4,783,690
4,794,432
4,801,986
4,803,533
4,809,045
4,809,047
4,810,665
4,823,176
4,837,606
4,860,080
4,883,767
4,888,627
4,890,143
4,901,127
4,904,609
4,933,740
4,963,951
4,969,027
Data Sheet
December 2001
background image
2001 Fairchild Semiconductor Corporation
HGTG12N60C3D Rev. B
Absolute Maximum Ratings
T
C
= 25
o
C, Unless Otherwise Specified
HGTG12N60C3D
UNITS
Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BV
CES
600
V
Collector Current Continuous
At T
C
= 25
o
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
C25
24
A
At T
C
= 110
o
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
C110
12
A
Average Diode Forward Current at 110
o
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I
(AVG)
15
A
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
CM
96
A
Gate to Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
GES
20
V
Gate to Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
GEM
30
V
Switching Safe Operating Area at T
J
= 150
o
C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSOA
24A at 600V
Power Dissipation Total at T
C
= 25
o
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
D
104
W
Power Dissipation Derating T
C
> 25
o
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0.83
W/
o
C
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . T
J
, T
STG
-40 to 150
o
C
Maximum Lead Temperature for Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
L
260
o
C
Short Circuit Withstand Time (Note 2) at V
GE
= 15V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .t
SC
4
s
Short Circuit Withstand Time (Note 2) at V
GE
= 10V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t
SC
13
s
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
1. Repetitive Rating: Pulse width limited by maximum junction temperature.
2. V
CE(PK)
= 360V, T
J
= 125
o
C, R
G
= 25
.
Electrical Specifications
T
C
= 25
o
C, Unless Otherwise Specified
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
Collector to Emitter Breakdown Voltage
BV
CES
I
C
= 250
A, V
GE
= 0V
600
-
-
V
Emitter to Collector Breakdown Voltage
BV
ECS
I
C
= 10mA, V
GE
= 0V
15
25
-
V
Collector to Emitter Leakage Current
I
CES
V
CE
= BV
CES
T
C
= 25
o
C
-
-
250
A
V
CE
= BV
CES
T
C
= 150
o
C
-
-
2.0
mA
Collector to Emitter Saturation Voltage
V
CE(SAT)
I
C
= I
C110
,
V
GE
= 15V
T
C
= 25
o
C
-
1.65
2.0
V
T
C
= 150
o
C
-
1.85
2.2
V
I
C
= 15A,
V
GE
= 15V
T
C
= 25
o
C
-
1.80
2.2
V
T
C
= 150
o
C
-
2.0
2.4
V
Gate to Emitter Threshold Voltage
V
GE(TH)
I
C
= 250
A,
V
CE
= V
GE
T
C
= 25
o
C
3.0
5.0
6.0
V
Gate to Emitter Leakage Current
I
GES
V
GE
=
20V
-
-
100
nA
Switching SOA
SSOA
T
J
= 150
o
C,
V
GE
= 15V,
R
G
= 25
,
L = 100
H
V
CE(PK)
= 480V
80
-
-
A
V
CE(PK)
= 600V
24
-
-
A
Gate to Emitter Plateau Voltage
V
GEP
I
C
= I
C110
, V
CE
= 0.5 BV
CES
-
7.6
-
V
On-State Gate Charge
Q
G(ON)
I
C
= I
C110
,
V
CE
= 0.5 BV
CES
V
GE
= 15V
-
48
55
nC
V
GE
= 20V
-
62
71
nC
Current Turn-On Delay Time
t
d(ON)I
T
J
= 150
o
C,
I
CE
= I
C110,
V
CE(PK)
= 0.8 BV
CES,
V
GE
= 15V,
R
G
= 25
,
L = 100
H
-
14
-
ns
Current Rise Time
t
rI
-
16
-
ns
Current Turn-Off Delay Time
t
d(OFF)I
-
270
400
ns
Current Fall Time
t
fI
-
210
275
ns
Turn-On Energy
E
ON
-
380
-
J
Turn-Off Energy (Note 3)
E
OFF
-
900
-
J
Diode Forward Voltage
V
EC
I
EC
= 12A
-
1.7
2.0
V
HGTG12N60C3D
background image
2001 Fairchild Semiconductor Corporation
HGTG12N60C3D Rev. B
Diode Reverse Recovery Time
t
rr
I
EC
= 12A, dI
EC
/dt = 100A/
s
-
34
42
ns
I
EC
= 1.0A, dI
EC
/dt = 100A/
s
-
30
37
ns
Thermal Resistance
R
JC
IGBT
-
-
1.2
o
C/W
Diode
-
-
1.5
o
C/W
NOTE:
3. Turn-Off Energy Loss (E
OFF
) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse, and ending
at the point where the collector current equals zero (I
CE
= 0A). The HGTG12N60C3D was tested per JEDEC Standard No. 24-1 Method for
Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss. Turn-On losses include
diode losses.
Electrical Specifications
T
C
= 25
o
C, Unless Otherwise Specified (Continued)
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
Typical Performance Curves
FIGURE 1. TRANSFER CHARACTERISTICS
FIGURE 2. SATURATION CHARACTERISTICS
FIGURE 3. COLLECTOR TO EMITTER ON-STATE VOLTAGE
FIGURE 4. COLLECTOR TO EMITTER ON-STATE VOLTAGE
I
CE
,
COLLECT
OR
T
O
EMITTER CURRENT (A)
V
GE
, GATE TO EMITTER VOLTAGE (V)
6
8
10
12
0
10
20
40
50
60
70
14
30
80
PULSE DURATION = 250
s
DUTY CYCLE <0.5%, V
CE
= 10V
4
T
C
= 150
o
C
T
C
= 25
o
C
T
C
= -40
o
C
I
CE
,
COLLECT
OR
T
O
EMITTER CURRENT (A)
V
CE
, COLLECTOR TO EMITTER VOLTAGE (V)
PULSE DURATION = 250
s, DUTY CYCLE <0.5%, T
C
= 25
o
C
0
0
2
4
6
8
10
10
20
30
12.0V
8.5V
9.0V
8.0V
7.5V
7.0V
V
GE
= 15.0V
40
50
60
70
80
10.0V
I
CE
,
COLLECT
OR
T
O
EMITTER CURRENT (A)
0
30
0
1
2
3
4
5
40
V
CE
, COLLECTOR TO EMITTER VOLTAGE (V)
PULSE DURATION = 250
s
DUTY CYCLE <0.5%, V
GE
= 10V
T
C
= 150
o
C
T
C
= 25
o
C
T
C
= -40
o
C
10
20
50
70
80
60
I
CE
,
COLLECT
OR
T
O
EMITTER CURRENT (A)
0
30
0
1
2
3
4
5
V
CE
, COLLECTOR TO EMITTER VOLTAGE (V)
T
C
= 25
o
C
T
C
= -40
o
C
T
C
= 150
o
C
DUTY CYCLE <0.5%, V
GE
= 15V
PULSE DURATION = 250
s
10
20
40
50
60
70
80
HGTG12N60C3D
background image
2001 Fairchild Semiconductor Corporation
HGTG12N60C3D Rev. B
FIGURE 5. MAXIMUM DC COLLECTOR CURRENT vs CASE
TEMPERATURE
FIGURE 6. SHORT CIRCUIT WITHSTAND TIME
FIGURE 7. TURN-ON DELAY TIME vs COLLECTOR TO
EMITTER CURRENT
FIGURE 8. TURN-OFF DELAY TIME vs COLLECTOR TO
EMITTER CURRENT
FIGURE 9. TURN-ON RISE TIME vs COLLECTOR TO
EMITTER CURRENT
FIGURE 10. TURN-OFF FALL TIME vs COLLECTOR TO
EMITTER CURRENT
Typical Performance Curves
(Continued)
25
50
75
100
125
150
0
5
10
15
20
25
I
CE
,
DC COLLECT
OR CURRENT (A)
T
C
, CASE TEMPERATURE (
o
C)
V
GE
= 15V
I
SC
,
PEAK SHOR
T CIRCUIT CURRENT(A)
20
60
80
120
t
SC
,
SHOR
T CIRCUIT
WITHST
AND
TIME
(
s)
10
11
12
V
GE
, GATE TO EMITTER VOLTAGE (V)
14
15
13
140
100
40
I
SC
t
SC
5
10
15
20
V
CE
= 360V, R
G
= 25
, T
J
= 125
o
C
t
d(ON)I
,
TURN-ON
DELA
Y TIME
(ns)
10
20
30
5
10
15
20
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
100
25
30
50
V
GE
= 10V
V
GE
= 15V
T
J
= 150
o
C, R
G
= 25
, L = 100H, V
CE(PK)
= 480V
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
t
d(OFF)I
,
TURN-OFF
DELA
Y TIME
(ns)
400
300
200
100
5
10
15
20
25
30
T
J
= 150
o
C, R
G
= 25
, L = 100mH, V
CE(PK)
= 480V
V
GE
= 10V
V
GE
= 15V
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
t
rI
,
TURN-ON RISE
TIME
(ns)
5
10
100
5
10
15
20
25
30
V
GE
= 15V
200
T
J
= 150
o
C, R
G
= 25
, L = 100H, V
CE(PK)
= 480V
V
GE
= 10V
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
t
fI
,
F
ALL TIME
(ns)
100
5
10
15
20
25
30
200
300
T
J
= 150
o
C, R
G
= 25
, L = 100H, V
CE(PK)
= 480V
V
GE
= 10V or 15V
90
80
HGTG12N60C3D
background image
2001 Fairchild Semiconductor Corporation
HGTG12N60C3D Rev. B
FIGURE 11. TURN-ON ENERGY LOSS vs COLLECTOR TO
EMITTER CURRENT
FIGURE 12. TURN-OFF ENERGY LOSS vs COLLECTOR TO
EMITTER CURRENT
FIGURE 13. OPERATING FREQUENCY vs COLLECTOR TO
EMITTER CURRENT
FIGURE 14. SWITCHING SAFE OPERATING AREA
FIGURE 15. CAPACITANCE vs COLLECTOR TO EMITTER
VOLTAGE
FIGURE 16. GATE CHARGE WAVEFORMS
Typical Performance Curves
(Continued)
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
0
5
10
15
20
E
ON
,
TURN-ON
ENERGY
LOSS
(mJ)
V
GE
= 15V
0.5
1.0
1.5
2.0
25
30
V
GE
= 10V
T
J
= 150
o
C, R
G
= 25
, L = 100H, V
CE(PK)
= 480V
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
E
OFF
,
TURN-OFF
ENERGY
LOSS
(mJ)
5
10
15
20
25
30
0.5
1.0
1.5
2.0
2.5
3.0
0
T
J
= 150
o
C, R
G
= 25
, L = 100H, V
CE(PK)
= 480V
V
GE
= 10V OR 15V
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
f
MAX
,
OPERA
TING FREQ
UENCY (kHz)
5
10
20
30
10
100
200
1
f
MAX2
= (P
D
- P
C
)/(E
ON
+ E
OFF
)
P
D
= ALLOWABLE DISSIPATION
P
C
= CONDUCTION DISSIPATION
f
MAX1
= 0.05/(t
D(OFF)I
+ t
D(ON)I
)
(DUTY FACTOR = 50%)
R
JC
=
1.2
o
C/W
T
J
= 150
o
C, T
C
= 75
o
C
R
G
= 25
, L = 100H
V
GE
= 15V
V
GE
= 10V
V
CE(PK)
, COLLECTOR TO EMITTER VOLTAGE (V)
I
CE
,
COLLECT
OR
T
O
EMITTER CURRENT (A)
0
100
200
300
400
500
600
0
20
40
60
80
100
T
J
= 150
o
C, V
GE
= 15V, R
G
= 25
, L = 100H
LIMITED BY
CIRCUIT
C
OES
C
RES
V
CE
, COLLECTOR TO EMITTER VOLTAGE (V)
0
5
10
15
20
25
0
500
1000
1500
2000
2500
C,
CAP
A
CIT
ANCE (pF)
C
IES
FREQUENCY = 1MHz
V
GE
,
GA
TE
T
O
EMITTER
V
O
L
T
A
GE (V)
V
CE
,
COLLECT
OR
T
O
EMITTER
V
O
L
T
A
GE (V)
Q
G
, GATE CHARGE (nC)
I
G(REF)
= 1.276mA, R
L
= 50
, T
C
= 25
o
C
0
240
120
360
480
600
15
12
9
6
3
0
V
CE
= 600V
V
CE
= 200V
10
20
30
40
50
60
0
V
CE
= 400V
HGTG12N60C3D
background image
2001 Fairchild Semiconductor Corporation
HGTG12N60C3D Rev. B
FIGURE 17. IGBT NORMALIZED TRANSIENT THERMAL IMPEDANCE, JUNCTION TO CASE
FIGURE 18. DIODE FORWARD CURRENT vs FORWARD
VOLTAGE DROP
FIGURE 19. RECOVERY TIMES vs FORWARD CURRENT
Typical Performance Curves
(Continued)
t
1
, RECTANGULAR PULSE DURATION (s)
10
-5
10
-3
10
0
10
1
10
-4
10
-1
10
-2
10
0
Z
JC
,
N
ORMALIZED THERMAL
RESPONSE
10
-1
10
-2
DUTY FACTOR, D = t
1
/ t
2
PEAK T
J
= (P
D
X Z
JC
X R
JC
) + T
C
t
1
t
2
P
D
SINGLE PULSE
0.01
0.5
0.2
0.1
0.05
0.02
0.5
1.0
1.5
2.5
3.0
I
EC
,
FOR
W
ARD CURRENT (A)
V
EC
, FORWARD VOLTAGE (V)
0
2.0
10
0
20
30
40
50
100
o
C
25
o
C
150
o
C
40
30
20
10
0
t
r
,
RECO
VER
Y
TIMES
(ns)
I
EC
, FORWARD CURRENT (A)
5
10
20
trr
T
C
= 25
o
C, dI
EC
/dt = 100A/
s
0
15
tb
ta
Test Circuit and Waveform
FIGURE 20. INDUCTIVE SWITCHING TEST CIRCUIT
FIGURE 21. SWITCHING TEST WAVEFORMS
R
G
= 25
L = 100
H
V
DD
= 480V
+
-
RHRP1560
t
fI
t
d(OFF)I
t
rI
t
d(ON)I
10%
90%
10%
90%
V
CE
I
CE
V
GE
E
OFF
E
ON
HGTG12N60C3D
background image
2001 Fairchild Semiconductor Corporation
HGTG12N60C3D Rev. B
Handling Precautions for IGBTs
Insulated Gate Bipolar Transistors are susceptible to
gate-insulation damage by the electrostatic discharge of
energy through the devices. When handling these devices,
care should be exercised to assure that the static charge
built in the handler's body capacitance is not discharged
through the device. With proper handling and application
procedures, however, IGBTs are currently being extensively
used in production by numerous equipment manufacturers in
military, industrial and consumer applications, with virtually
no damage problems due to electrostatic discharge. IGBTs
can be handled safely if the following basic precautions are
taken:
1. Prior to assembly into a circuit, all leads should be kept
shorted together either by the use of metal shorting
springs or by the insertion into conductive material such
as "ECCOSORBD
LD26" or equivalent.
2. When devices are removed by hand from their carriers,
the hand being used should be grounded by any suitable
means, for example, with a metallic wristband.
3. Tips of soldering irons should be grounded.
4. Devices should never be inserted into or removed from
circuits with power on.
5. Gate Voltage Rating - Never exceed the gate-voltage
rating of V
GEM
. Exceeding the rated V
GE
can result in
permanent damage to the oxide layer in the gate region.
6. Gate Termination - The gates of these devices are
essentially capacitors. Circuits that leave the gate open-
circuited or floating should be avoided. These conditions
can result in turn-on of the device due to voltage buildup on
the input capacitor due to leakage currents or pickup.
7. Gate Protection - These devices do not have an internal
monolithic Zener Diode from gate to emitter. If gate
protection is required an external Zener is recommended.
Operating Frequency Information
Operating frequency information for a typical device (Figure 13)
is presented as a guide for estimating device performance
for a specific application. Other typical frequency vs collector
current (I
CE
) plots are possible using the information shown
for a typical unit in Figures 4, 7, 8, 11 and 12. The operating
frequency plot (Figure 13) of a typical device shows f
MAX1
or
f
MAX2
whichever is smaller at each point. The information is
based on measurements of a typical device and is bounded
by the maximum rated junction temperature.
f
MAX1
is defined by f
MAX1
= 0.05/(t
D(OFF)I
+ t
D(ON)I
).
Deadtime (the denominator) has been arbitrarily held to 10%
of the on-state time for a 50% duty factor. Other definitions
are possible. t
D(OFF)I
and t
D(ON)I
are defined in Figure 21.
Device turn-off delay can establish an additional frequency
limiting condition for an application other than T
JM
. t
D(OFF)I
is important when controlling output ripple under a lightly
loaded condition.
f
MAX2
is defined by f
MAX2
= (P
D
- P
C
)/(E
OFF
+ E
ON
). The
allowable dissipation (P
D
) is defined by P
D
= (T
JM
- T
C
)/R
JC
.
The sum of device switching and conduction losses must not
exceed P
D
. A 50% duty factor was used (Figure 13) and the
conduction losses (P
C
) are approximated by
P
C
= (V
CE
x I
CE
)/2.
E
ON
and E
OFF
are defined in the switching waveforms
shown in Figure 21. E
ON
is the integral of the instantaneous
power loss (I
CE
x V
CE
) during turn-on and E
OFF
is the
integral of the instantaneous power loss during turn-off. All
tail losses are included in the calculation for E
OFF
; i.e. the
collector current equals zero (I
CE
= 0).
HGTG12N60C3D
background image
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT
RIGHTS, NOR THE RIGHTS OF OTHERS.
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is
not intended to be an exhaustive list of all such trademarks.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant into
the body, or (b) support or sustain life, or (c) whose
failure to perform when properly used in accordance
with instructions for use provided in the labeling, can be
reasonably expected to result in significant injury to the
user.
2. A critical component is any component of a life
support device or system whose failure to perform can
be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or
effectiveness.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification
Product Status
Definition
Advance Information
Preliminary
No Identification Needed
Obsolete
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.
Formative or
In Design
First Production
Full Production
Not In Production
OPTOLOGICTM
OPTOPLANARTM
PACMANTM
POPTM
Power247TM
PowerTrench
QFETTM
QSTM
QT OptoelectronicsTM
Quiet SeriesTM
SILENT SWITCHER
FAST
FASTrTM
FRFETTM
GlobalOptoisolatorTM
GTOTM
HiSeCTM
ISOPLANARTM
LittleFETTM
MicroFETTM
MicroPakTM
MICROWIRETM
Rev. H4
ACExTM
BottomlessTM
CoolFETTM
CROSSVOLTTM
DenseTrenchTM
DOMETM
EcoSPARKTM
E
2
CMOS
TM
EnSigna
TM
FACTTM
FACT Quiet SeriesTM
SMART STARTTM
STAR*POWERTM
StealthTM
SuperSOTTM-3
SuperSOTTM-6
SuperSOTTM-8
SyncFETTM
TinyLogicTM
TruTranslationTM
UHCTM
UltraFET
STAR*POWER is used under license
VCXTM