ChipFind - документация

Электронный компонент: HA13557AFH

Скачать:  PDF   ZIP
HA13557AFH
Combo (Spindle & VCM) Driver
ADE-207-234A (Z)
2nd. Edition
July 1997
Description
This COMBO Driver for HDD application consists of Sensorless Spindle Driver and BTL type VCM
Driver.
Bipolar Process is applied and a "Soft Switching Circuit" for less commutation noise and a "Booster
Circuit" for smaller Saturation Voltage of Output Transistor are also implemented.
Features
Soft Switching Driver
Small Surface Mount Package: FP-48T (QFP48 Pin)
Low thermal resistance: 30
C/W with 4 layer multi glass-epoxy board
Low output saturation voltage
Spindle
1.44 V Typ (@1.8 A)
VCM
1.0 V Typ (@1.0 A)
Functions
2.2 A Max/3-phase motor driver
1.5 A Max BTL VCM Driver
Auto retract
Soft Switching Matrix
Start up circuit
Booster
Speed Discriminator
Internal Protector (OTSD, LVI)
POR
Power monitor
HA13557AFH
2
Pin Arrangement
1
2
3
4
5
6
36
35
34
33
32
31
30
29
28
27
26
25
VBST
VCMP
VCMN
BC2
BC1
GND
TAB
GND
W
RNF
PCOMP
CT
V
TAB
TAB
TAB
COMPOUT
NC*
NC*
GAIN
VCMENAB
GND
GND
POR
SPNENAB
READY
CLOCK
CNTSEL
RS
RETON
RETPOW
Vpsv
LVI2
GND
GND
OPIN()
VCTL
OPIN(
+
)
RESINH
VREF1
U
C-PUMP
CLREF
R1
Vpss
GND
13 14 15 16 17 18
19 20 21 22 23 24
48 47 46 45 44 43
42 41 40 39
37
38
*NC : No internal connection
Please note that there is no isolation check between pin 34 and pin 35
at the testing of this IC.
(Top View)
7
8
9
10
11
12
GND
V
SS
LVI1
DELAY
COMM
POLSEL
HA13557AFH
3
Pin Description
Pin Number Pin Name
Function
1
VBST
Boosted voltage output to realize the low output saturation voltage
2
VCMP
Output terminal on VCM driver
3
VCMN
Output terminal on VCM driver
4
BC2
To be attached the external capacitor for booster circuitry
5
BC1
ditto
6, TAB, 7
GND
Ground pins
8
W
W phase output terminal on spindle motor driver
9
RNF
Sensing input for output current on spindle motor driver
10
PCOMP
To be attached the external capacitor for phase compensation of spindle
motor driver
11
CT
To be attached the center tap of the spindle motor for B-EMF sensing
12
V
V phase output terminal on spindle motor driver
13
U
U phase output terminal on spindle motor driver
14
C-PUMP
To be attached the external integral constants for speed control of spindle
motor
15
CLREF
Reference voltage input for current limiter of spindle motor driver
16
R1
To be attached the external resistor for setting up the oscillation frequency of
start-up circuitry and the gain of speed control loop of spindle motor driver
17
Vpss
Power supply for spindle motor driver
18, TAB, 19
GND
Ground pins
20
V
SS
Power supply for small signal block
21
LVI1
Sensing input for power monitor circuitry
22
DELAY
To be attached the external capacitor to generate the delay time for power on
reset signal
23
COMM
To be attached the external capacitor for setting up the oscillation frequency
24
POLSEL
To be selected the input status corresponding to the pole number of spindle
motor
25
CNTSEL
To select the count Number of Speed Discriminator
26
CLOCK
Master clock input for this IC
27
READY
Output of speed lock detector for spindle motor
28
SPNENAB
To select the status of spindle motor driver
29
POR
Output of power on reset signal for HDD system
30, TAB, 31
GND
Ground pins
32
VCMENAB
To select the status of VCM driver
33
GAIN
To select the Transfer conductance gm of VCM driver
HA13557AFH
4
Pin Description (cont)
Pin Number Pin Name
Function
34
NC
No function
35
NC
No function
36
COMPOUT
Comparator output to detect the direction of output current on VCM driver
37
VREF1
Regulated voltage output to be used as reference of peripheral ICs
38
RESINH
Used for inhibiting the restart function of the spindle motor driver after power
down
39
OPIN (+)
Non inverted input of OP.Amp. to be used for filtering the signal on PWMOUT
40
VCTL
OP.Amp. output, this signal is used as control signal for VCM driver output
41
OPIN ()
Inverted input of OP.Amp. to be used for filtering the signal on PWMOUT
42, TAB, 43
GND
Ground pins
44
LVI2
Sensing input for power monitor circuitry
45
Vpsv
Power supply for VCM driver
46
RETPOW
Power supply for retract circuitry
47
RETON
To be attached the base terminal of external transistor for retracting
48
RS
Sensing input for output current on VCM driver
HA13557AFH
5
Block Diagram
V
SS
(+5V)
V
SS
C102
B-EMF
AMP.
START-UP
CIRCUIT
CHARGE
PUMP
SOFT
SWITCHING
MATRIX
COMMUTATION
LOGIC
CURRENT
CONTROL
(D1)
1/32
SPEED DISCRI.
(CNT)
SPEED
READY
Vref1
(=4.6V)
OTSD
BOOSTER
POWER
MONITOR
POR
Delay
OPAMP.
V
BST
Vss
(+5V)
LVI1
R101
R102
R104
R103
LVI2
Vps
(+12V)
DELAY
C106
GND
POR
(L:RESET)
R105 Vss(+5V)
COMP
OUT
COMPARATOR
RS
VCMN
R
L
R
S
R110
VCMP
RETON
RETPOW
Qret2
C109
Vpsv
PCOMP
C110
R
NF
W
V
U
U
V
W
SPINDLE
DRIVER
RETRACT
DRIVER
VCM
DRIVER
Vss
Vps
P
N
+
V
BST
1
4
5
32
33
35
34
37
39
41
40
27
25
26
24
28
16
15
14
23
21 44
22
11
13
12
8
9
10
45
46
47
2
3
48
36
29
20
17
V
BST
+
Vps(+12V)
Vpss
C101
CT
C103 COMM
C2
CLREF
C1
C-PUMP
R1b
R1
R1a
SPNENAB
POLSEL
CLOCK
(5MHz Typ)
CNTSEL
READY
VCTL
OPIN()
OPIN(+)
Vref1
NC
NC
GAIN
VCM ENAB
BC1
C104
C105
BC2
V
BST
+
38
RESINH
C
X
R
X
C111
TAB
6, 7, 18, 19, 30,
31, 42, 43
R113
Qret1
R112
R109
R111
D1
C112
D2
D3
D4
HA13557AFH
6
Truth Table
Table 1
Truth Table (1)
SPNENAB
Spindle Driver
H
ON
Open
Cut off
L
Braking
Table 2
Truth Table (2)
VCMENAB
VCM Driver
H
ON
L
Cut off
Table 3
Truth Table (3)
OTSD
Spindle Driver
VCM Driver
Retract Driver
POR
not Active
See table 1
See table 2
Cut off
X
Active
Cut off
Cut off
ON
L
Table 4
Truth Table (4)
POLSEL
(D1)
Comment
H
--
Test Mode
Open
1/12
for 8 poles motor
L
1/18
for 12 poles motor
Table 5
Truth Table (5)
CNTSEL
CNT
Rotation Speed
(at CLOCK = 5 MHz)
H
2605
3,600 rpm
Open
2084
4,500 rpm
L
1736
5,400 rpm
HA13557AFH
7
Table 6
Truth Table (6)
RESINH
Spindle Driver
H
Inhibiting the restart after power down
L
Not inhibiting the restart after power down
Table 7
Truth Table (7)
GAIN
VCM Driver
H
High Gain Mode
L
Low Gain Mode
HA13557AFH
8
Timing Chart
1. Power on reset (1)
Vhys
Vsd
1.0V
MAX
0
POR
Vps and
V
SS
t
DLY
t
t
Note:
1.
How to determine the threshold voltage Vsd and the delay time t
DLY
both are shown in the
external components table.
HA13557AFH
9
2. Power on reset (2)
,,
,,
V
PS
or
V
SS
Spindle
Driver
VCM
Driver
POR
ON
OFF
ON
OFF
,,
,,
,,
,,
,,
,,
Retract
Driver
t
por
t
por
<
1
s
<
1
s
Retract
Note:
2.
Retract driver need B-EMF voltage or another power supply.
HA13557AFH
10
3. Motor start-up seaquence
,,,
,
,
,,
(a) Timing chart of start-up seaquence
SPNENAB
Rotation
Speed
Internal
READY
READY
(Pin 27)
(b) Retry circuitry for misstart-up
Open
No
0
Synchronous
Driving
Driving by
B-EMF
sensing
Switching
t
delay
*
2
Soft Switching*
3
No+
No*
1
No
No*
1
t
,,
,,
Motor
on
Synchronous
driving
Driving by
B-EMF
sensing
(Motor off)
(Motor stop)
(not stop)
Motor
stop
detector
Note *1. Speed lock detection range
No is as follows.
*2. READY output goes to High, if the rotation speed error keeps to be less than
No longer time than tdelay.
No =1.2% when CNTSEL=H
=1.5% when CNTSEL=Open
=1.8% when CNTSEL=L
tdelay=
[ms]
250 10
7
fclk [Hz]
*3. The turning point of driving mode from switching synchronize to the turning
point of READY output from Low to High.
The HA13557FH has the motor stop detector as shown hatching block. This function is monitoring
the situation of the motor while the motor is running by B-EMF sensing. If the motor will be caused a
misstarting up, the motor will be automatically restarted within 200 ms after the motor stopped. This
function increase the reliability for the motor starting up.
HA13557AFH
11
4. Braking & Shut down the Spindle Driver
,,
,,
SPNENAB
Open
ON
CUT OFF
BRAKING
CUT OFF
> 20
s
Open
Note:
The SPNENAB should be selected the open state after braking to reduce the supply current from
Vps and V
SS
.
5. Start-up of the Spindle motor
,
Open
SPNENAB
COMM
I
U
I
V
I
W
GND
SOURCE
0
SINK
SOURCE
0
SINK
SOURCE
0
SINK
2T
COMM
4T
COMM
4T
COMM
4T
COMM
4T
COMM
4T
COMM
6T
COMM
8T
COMM
10T
COMM
12T
COMM
14T
COMM
16T
COMM
16T
COMM
not detecting the B-EMF
detecting the B-EMF
Synchronous Driving for motor start up
Driving by
B-EMF sensing
t
COMM
(see External Components Table)
Vth1
Vth2
HA13557AFH
12
6. Acceleration and Running the spindle motor
U
BEMF
V
BEMF
W
BEMF
Iu
Iv
Iw
Iu
Iv
Iw
+
0
+
0
+
0
SOURCE
SINK
0
SOURCE
SINK
0
SOURCE
SINK
0
SOURCE
SINK
0
SOURCE
SINK
0
SOURCE
SINK
0
(1) Acceleration(switching mode)
(2) Running (soft switching mode)
HA13557AFH
13
Application
5
4
1
23
15
16
14
24
25
27
26
28
32
33
38
37
41
40
39
36
20
29
22
21
44
48
3
2
47
46
45
10
9
8
12
13
11
17
BC1
BC2
VBST
COMM
CLREF
R1
C-PUMP
POLSEL
CNTSEL
READY
CLOCK
SPNENAB
VCMENAB
GAIN
RESINH
VREF1
OPIN()
VCTL
OPIN(+)
COMPOUT
V
SS
POR
DELAY
C106
C102
R105
R101
R102
V
SS
(+5V)
R4
C4
C3
R3
C5
R6
R1a
R1b
C2
R2
C1
C103
C105
C104
Vpss
CT
U
V
W
RNF
PCOMP
Vpsv
RETPOW
RETON
VCMP
VCMN
RS
LVl2
LVl1
C101
R
NF
C110
C109
R103
R104
Qret2
D1
R
S
RL
V
PS
(+12V)
HA13557AFH
GND
C
X
R
X
R8
R7
PWMIN
R5
C111
6 7 18 19 30 31 42 43 TAB
R111
R109
Qret1
Qret3
R113
R110
C112
R112
D3
D4
D2
HA13557AFH
14
External Components
Parts No.
Recommended Value
Purpose
Note
R1a
(R1a + R1b)
10 k
V/I converter
1, 4, 6
R1b
(R1a + R1b)
10 k
R2
--
Integral constant
3
R3 to R8
--
PWM filter
9
R101, R102
--
Setting of LVI1 voltage
7
R103, R104
--
Setting of LVI2 voltage
7
R105
5.6 k
Pull up
R109, R110
(R109 + R110)
10 k
Retout voltage adjust
R111, R112, R113
--
Retract Driver
RS
1.0
Current sensing for VCM Driver
10
Rnf
--
Current sensing for Spindle Driver
1
R
X
--
Reduction for gain peaking
11
C1, C2
--
Integral constant
3
C3 to C6
--
PWM filter
9
C
X
--
Reduction for gain peaking
11
C101
0.1
F
Power supply by passing
C102
0.1
F
Power supply by passing
C103
--
Oscillation for start-up
6
C104
0.22
F
for booster
C105
2.2
F
for booster
C106
0.33
F
Delay for POR
8
C109
0.1
F
Power supply by passing
C110, C111
0.22
F
Phase compensation
C112
--
Phase compensation for Retract
Qret1, Qret2, Qret3
--
Retract Driver
12
D1
TBD
Prevent of counter current
D2, D3, D4
Si Diode
for rectification
HA13557AFH
15
Notes: 1. Output maximum current on spindle motor driver Ispnmax is determined by following equation.
Ispnmax =
[A]
R1b
R1a + R1b
V
R1
R
NF
(1)
where, V
R1
: Reference Voltage on Pin 16 [V] (= 1.17)
2. Input clock frequency fclk on pin 26 is determined by following equation.
fclk =
N
O
P D1 (CNT 0.5) [Hz]
4
5
(2)
where, N
O
:
Standard rotation speed [rpm]
P:
Number of pole
D1: Dividing ratio on divider 1
D1
= 1/12 (when Pin 24 = Open) for 8 pole motor
= 1/18 (when Pin 24 = Low) for 12 pole motor
CNT:Count number on speed discriminator
CNT = 2605 (when Pin 25 = High)
= 2084 (when Pin 25 = Open)
= 1736 (when Pin 25 = Low)
3. Integral constants R2, C1 and C2 can be designed as follows.
O
=
[rad/s]
2
1
10
N
O
60
(3)
R2 =
[
]
1
9.55
Rnf J
O
N
O
(R1a + R1b)
V
R1
K
T
Gctl
(4)
C1 =
[F]
1
10
O
R2
(5)
C2 = 10 C1
[F]
(6)
where, J:
Moment of inertia [kgcms
2
]
K
T
:
Torque constant [kgcm/A]
Gctl: Current control amp gain from pin 14 to pin 9 (= 0.794)
4. It is notice that rotation speed error Nerror is caused by leak current Icer2 on pin 14 and this
error depend on R1a and R1b as following equation.
Nerror = Icer2
[%]
100
(R1a + R1b)
VR1
(7)
where, Icer2: Ieak current on pin 14 [A]
5. Oscillation period t
COMM
on pin 23 which period determine the start up characteristics, is should be
chosen as following equation.
t
COMM
=
[s]
to
J
P K
T
Ispnmax
1
8
J
P K
T
Ispnmax
1
4
(8)
HA13557AFH
16
6. The capacitor C103 on pin 23 can be determined by t
COMM
and following equation.
C103 =
[F]
VR1
R1a + R1b
t
COMM
Vth
H
Vth
L
1
4
(9)
where, Vth
H
: Threshold voltage on start up circuit [V] (= 2.0)
Vth
L
: Threshold voltage on start up circuit [V] (= 0.5)
7. LVI operatig voltage Vsd1, Vsd2 and its hysteresis voltage Vhys1, Vhys2 can be determined by
following equations.
for V
SS
R101
R102
Vsd1 = 1 + Vth4
[V]
(10)
R101
R102
Vhys1 = 1 + Vhyspm
[V]
(11)
for Vps
R103
R104
Vsd2 = 1 + Vth3
[V]
(12)
R103
R104
Vhys2 = 1 + Vhyspm
[V]
(13)
where, Vth3, Vth4: Threshold voltage on pin 21 and pin 44 [V] (= 1.39)
Vhyspm:
Hysteresis voltage on pin 21 and pin 44 [mV] (= 40)
Shut down voltage Vsd1, Vsd2 can be designed by the following range.
Vsd1
4.25 [V], Vsd2
10 [V]
8. The delay time t
DLY
of
POR
for power on reset is determined as follows.
C106 Vth5
I
CH3
t
DLY
=
[s]
(14)
where, Vth5: Threshold voltage on pin 22 [V] (= 1.4)
I
CH3
:
Charge current on pin 22 [
A] (= 6)
9. The differential voltage (Vctl V
REF1
) using for control of VCM driver depend on PWMDAC input
PWMIN as follows.
D
PWM
50
100
Vctl V
REF1
= 2 V
REF1
R6
R5
H
FLT
(s)
(15)
where, D
PWM
:
Duty cycle on PWMIN [%]
H
FLT(S)
:
Normalized transfer function from PWMIN to pin 40 (Vctl) as shown in
equation (17)
To be satisfied with above equation (15), it is notice that the ratio of R6 to R7 must be choosen
as shown below.
R8
R7
= 2
R6
R5
1
R6
R5
1
(16)
HA13557AFH
17
=
1
R6
R5
1 + s C5 R// C3 (R// + R3)
+ C4 (R// + R3 + R4)
R6
R5
+ s
2
C5 C4 R// (R3 + R4) C5 C3 R// R3
+ C3 C4 R4 (R// + R3)
+ s
3
C3 C4 C5 R// R3 R4
H
FLT
(s)
(17)
where,
R// =
R7 R8
R7 + R8
(18)
If you choose the R// << R3, then equation (17) can be simplified as following equation.
H
FLT
(s) =
1
1
s
n
1 +2
s
O
1 +
+
s
n
2
(19)
where,
O
=
1
C5 R//
(20)
n =
1
C3 C4 R3 R4
(21)
=
C4 (R3 + R4) C3 R3
2 C3 C4 R3 R4
R6
R5
(22)
10. The relationship between the output current Ivcm and the input voltage (Vctl V
REF1
) on VCM
driver is as follows.
Ivcm(s) = Vctl V
REF1
Kvcm
1
Rs
Hvcm(s)
(23)
where, Vctl:
Input control voltage for VCM driver on pin 40 [V]
V
REF1
:
Reference voltage on pin 37 [V] (= 4.6)
Kvcm:
DC gain of VCM driver
(= 1.74 for High gain mode)
(= 0.44 for Low gain mode)
Hvcm(s): Transfer function of VCM driver as shown following equation
Hvcm(s) =
1 + 2
VCM
s
VCM
+
2
1
s
VCM
(24)
where,
VCM
=
P
Rs
Lm
(25)
HA13557AFH
18
1
2
VCM
=
1 +
R
L
Rs
1
P
Rs
Lm
(26)
where,
p: Bandwidth of internal power amplifiers for VCM driver [rad/s]
(= 3
10
6
)
Lm: Inductance of the VCM coil [H]
R
L
:
Resistance of the VCM coil [
]
and from above equations the -3 dB bandwidth f
VCMC
of VCM driver is as following equation.
VCM
2
f
VCMC
=
1 2
VCM
2
+
2
VCM
2
1
2
+ 1
(27)
11. The frequency response of VCM driver maybe have a gain peaking because of the resonation of
the motor coil impedance. If you want to tune up for this characteristics, you can reduce the
peaking by additional snubber circuit R
X
and C
X
as follows.
BTL Driver
R
X
C
X
1/2 V
PS
+
+
R3
R3
Coil
N
RS
P
R
S
Figure 1 VCM Driver Block Diagram
20
10
0
10
20
100
1k
10k
100k
Frequency (Hz)
I
O
(dB)
Normal
C
X
= 0.22
F
R
X
= 560
(for example) R
L
= 14.7
, R
S
= 1
, L = 1.7 mH, Gain = L
HA13557AFH
19
12. The Qret3 collector voltage Vret is determined by
Vret V
F
(D1) Vsat
VL
R
L
+ Rs
Iret =
R109
R110
Vret = V
RT
(
.
.
+ 1)
R109
R110
(Vretpow
V
RT
(
+ 1))
(28)
where, Vretpow:
Applied voltage on pin 46 [V]
V
RT
:
Reference voltage of Retract (toward voltage of Qret2) [V]
V
F
(D1):
Foward voltage of D1 [V]
Vsat
VL
:
Saturation voltage on pin 3 at retracting [V]
(See electrical characteristics)
HA13557AFH
20
Absolute Maximum Ratings (Ta = 25
C)
Item
Symbol
Rating
Unit
Notes
Power supply voltage
Vps
+15
V
1
Signal supply voltage
V
SS
+7
V
2
Input voltage
V
IN
V
SS
V
3
Output current-Spindle
Iospn (Peak)
2.2
A
Iospn (DC)
1.8
A
Output current-VCM
Iovcm (Peak)
1.5
A
Iovcm (DC)
1.0
A
Power dissipation
P
T
5
W
4
Junction temperature
Tj
+150
C
5, 6
Storage temperature
Tstg
55 to +125
C
Notes: 1. Operating voltage range is 10.2 V to 13.8 V.
2. Operating voltage range is 4.25 V to 5.75 V.
3. Applied to Pin 24, 25, 26, 28, 32, 33 and pin 38
4. Operating junction temperature range is Tjop = 0
C to +125
C.
5. ASO of upper and lower power transistor are shown below.
Operating locus must be within the ASO.
6. The OTSD (Over Temperature Shut Down) function is built in this IC to avoid same damages by
over heat of this chip. However, please note that if the junction temperature of this IC becomes
higher than the operating maximum junction temperature (Tjopmax = 125
C), the reliability of this
IC often goes down.
7. Thermal resistance:
j-a
30
C/W with 4 layer multi glass-epoxy board
10
1
10
100
VCE (V)
IC (A)
15
1
0.1
t=10ms
t=50ms
t=100ms
2.2
Figure 2 ASO of Output Stages (Spindle)
HA13557AFH
21
10
1
10
100
VCE (V)
IC (A)
15
1.5
1
0.1
t=10ms
t=50ms
t=100ms
Figure 3 ASO of Output Stages (VCM)
HA13557AFH
22
Electrical Characteristics (Ta = 25
C, Vps = 12 V, V
SS
= 5 V)
Item
Symbol Min
Typ
Max
Unit
Test Conditions
Applicable
Pins
Note
Supply
current
for V
SS
I
SS0
--
5.8
7.0
mA
SPNENAB = Open
VCMENAB = L
20
I
SS1
--
21
27
mA
SPNENAB = H
VCMENAB = H
20
for Vps
Ips0
--
1.7
2.2
mA
SPNENAB = Open
VCMENAB = L
17, 45
Ips1
--
19
24
mA
SPNENAB = H
VCMENAB = H
17, 45
Logic input 1
(GAIN)
(RESINH)
Input low voltage V
IL1
--
--
0.8
V
33, 38
Input high
voltage
V
IH1
2.0
--
--
V
Input low current I
IL1
--
--
10
A
Input = GND
Input high
current
I
IH1
--
--
10
A
Input = 5.0 V
Logic input 2
(CLOCK)
Input low voltage V
IL2
--
--
0.8
V
26
Input high
voltage
V
IH2
3.5
--
--
V
Input low current I
IL2
--
180
260
A
Input = GND
Input high
current
I
IH2
--
230
330
A
Input = 5.0 V
Logic input 3
(VCMENAB)
Input low voltage V
IL3
--
--
0.8
V
32
Input high
voltage
V
IH3
2.0
--
--
V
Input low current I
IL3
--
--
10
A
Input = GND
Input high
current
I
IH3
--
--
330
A
Input = 5.0 V
Logic input 4
(SPNENB)
Input low voltage V
IL4
--
--
1.0
V
28
Input middle
voltage
V
IM4
2.0
--
3.1
V
Input high
voltage
V
IH4
3.9
--
--
V
HA13557AFH
23
Electrical Characteristics (Ta = 25
C, Vps = 12 V, V
SS
= 5 V) (cont)
Item
Symbol Min
Typ
Max
Unit
Test Conditions
Applicable
Pins
Note
Logic input 4
(SPNENB)
Input low current I
IL4
75
105
150
A
Input = GND
28
Input high
current
I
IH4
75
105
150
A
Input = 5.0V
Input dead
current
I
DEAD
10
--
--
A
Logic input 5
(POLSEL)
(CONTSEL)
Input low voltage V
IL5
--
--
1.0
V
24, 25
Input middle
voltage
V
IM5
2.0
--
3.1
V
Input high
voltage
V
IH5
3.9
--
--
V
Input low current I
IL5
38
53
75
A
Input = GND
Input high
current
I
IH5
38
53
75
A
Input = 5.0V
Spindle
driver
Total saturation
voltage
Vsatspn --
1.44
2.0
V
Ispn = 1.8A
8, 12, 13
--
--
0.75
V
Ispn = 0.6A
Saturation at
braking
Vbreak
--
--
0.7
V
Ibreak = 0.6A
Leak current
Icer1
--
--
2.0
mA
SPNENAB=Open
Current limiter
reference
voltage
V
OCL
430
480
530
mV
V
CLREF
= 500mV
R
NF
= 1.0
9
Control amp
gain
Gctl
--
2
2
dB
R
NF
= 1.0
9, 14
Clamp diode
forward voltage
Vdf
1.6
1.9
2.2
V
Idf = 0.5A
8, 12, 13
B-EMF amp. Input sensitivity
Vmin
60
90
125
mVp-p
8, 12, 13
1
Charge
pump
Reference
voltage
VR1
1.06
1.17
1.28
V
R1a+R1b = 24k
14, 16
Charge current
I
CH1
40
45
50
A
C PUMP = 1.0V
Discharge
current
I
DIS1
40
45
50
A
Leak current
Icer2
--
--
50
nA
HA13557AFH
24
Electrical Characteristics (Ta = 25
C, Vps = 12 V, V
SS
= 5 V) (cont)
Item
Symbol Min
Typ
Max
Unit
Test Conditions
Applicable
Pins
Note
Speed discri Operating
frequency
fclk
--
--
8.0
MHz
26
Start up
circuit
Threshold
voltage
Vth
H
1.6
1.8
2.0
V
16, 23
Vth
L
0.3
0.5
0.7
V
Charge current
I
CH2
21
23
26
A
R1a + R1b = 24
k
Discharge
current
I
DIS2
19
22
25
A
COMM = 1 V
READY
Output high
voltage
Vohr
V
SS
0.4
--
V
SS
V
I
O
= 1 mA
27
Output low
voltage
Volr
--
--
0.4
V
I
O
= 1 mA
VCM driver
Total saturation
voltage
Vsatvcm --
1.0
1.38
V
Ivcm = 1.0 A
2, 3
--
0.5
0.69
V
Ivcm = 0.5 A
Output leak
current
Icer3
--
--
2.0
mA
Vce = 15 V
Total output
offset voltage
Voff(H)
--
--
20
mV
V
CTL
= OP ()
V
REF
= OP (+)
2, 48
Voff(L)
--
--
10
mV
Output
quiescent
voltage
Vqvcm
5.6
6.0
6.4
V
R
L
= 14
,
R
S
= 1.0
2, 3
Total gain
bandwidth
B
--
26
--
kHz
R
S
= 1.0
,
R
L
= 28
2, 3
1
--
50
--
kHz
R
S
= 1.0
,
R
L
= 14
Transfer gain
gm (H)
--
1.74
5%
A/V
Higain-mode
R
S
= 1.0
,
R
L
= 14
2, 34, 48
gm (L)
--
0.44
5%
A/V
Logain-mode
R
S
= 1.0
,
R
L
= 14
HA13557AFH
25
Electrical Characteristics (Ta = 25
C, Vps = 12 V, V
SS
= 5 V) (cont)
Item
Symbol
Min
Typ
Max
Unit
Test Conditions
Applicable
Pins
Note
Retract
driver
Retpow voltage
Vretpow
0.8
--
--
V
Ireton = 0.1 mA
46
Retout sink
current
Ireton
5
8
--
mA
Vretpow = 4.0 V
Output leak
current
Icer4
--
--
10
A
Vreton = 15 V,
Vretpow = 15 V
37
Low side
saturation
voltage
VsatVL
0.2
0.33
0.45
V
Iret = 0.1 A
3
OP Amp
Input current
Iinop
--
--
500
nA
39, 41
Input offset
voltage
Vosop
--
--
(
7)
mV
1
Common mode
input voltage
range
Vcmop
0
--
Vps
0.2
V
Output high
voltage
Vohop
Vps
1.3
--
--
V
Iout = 1.0 mA
40
Output low
voltage
Volop
--
--
1.1
V
Iout = 1.0 mA
Comparator Input sensitivity
Vmin2
9
0
--
mV
2, 3, 36
1
Output low
voltage
Volcp
--
--
0.4
V
I
O
= 1 mA
36
Output high
voltage
Vohcp
V
SS
1.8
--
V
SS
V
I
O
= 1 mA
Vref1
Output voltage
Vref1
--
4.0
3%
V
I
O
= 20 mA
37
Output
resistance
Ro1
--
--
5.0
I
O
= 20 mA
Power
monitor
Threshold
voltage
Vth3
2%
1.39
+3%
V
V
SS
= 5 V
44
2
Hysteresis
Vhyspm1 25
40
55
mV
V
SS
= 5 V
Threshold
voltage
Vth4
2%
1.38
+3%
V
V
SS
= 4 V
21
2
Hysteresis
Vhyspm2 25
40
55
mV
V
SS
= 4 V
HA13557AFH
26
Electrical Characteristics (Ta = 25
C, Vps = 12 V, V
SS
= 5 V) (cont)
Item
Symbol Min
Typ
Max
Unit
Test Conditions
Applicable
Pins
Note
POR
Output low
voltage
V
OL2
--
--
0.4
V
I
O
= 1 mA
29
V
OL3
--
--
0.4
V
I
O
= 1 mA
V
SS
= Vps = 1.0 V
Output leak
current
Icer5
--
--
10
A
Vpor = 7 V
Threshold
voltage
Vth5
--
1.4
5%
V
22
Charge current
I
CH3
--
6
25%
A
Discharge
current
I
DIS3
40
--
--
mA
OTSD
Operating
temperature
Tsd
125
150
--
C
1
Hysteresis
Thys
--
25
--
C
1
Notes: 1. Design guide only.
2. Variations of threshold voltage Vth3 and Vth4 depending on the power supply V
SS
are shown in
figure 4.
1.42
1.41
1.33
3.8
Power supply V
SS
(V)
Threshold voltage Vth3, Vth4 (V)
4.0
5.0
4.2 4.4 4.6 4.8
5.2 5.4
6.0
5.6 5.8
1.40
1.39
1.38
1.37
1.36
1.35
1.34
Test condition of Vth3
Test condition of Vth4
Figure 4
HA13557AFH
27
Package Dimensions
Unit: mm
36
0 10
0.1
0.13 M
17.2
0.2
25
37
48
1
12
24
13
17.2
0.2
0.3
0.05
0.65
3.05 Max
0.1
0.1
1.6
0.8
0.3
14
2.7
0.17
0.05
0.825
2.925
2.925
4.85
2.425
2.925 2.925
0.825
4.85
2.425
Hitachi code
EIAJ code
JEDEC code
FP-48T
--
--
Cautions
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party's rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi's sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-
safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor
products.
Hitachi, Ltd.
Semiconductor & Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.
Hitachi Asia Pte. Ltd.
16 Collyer Quay #20-00
Hitachi Tower
Singapore 049318
Tel: 535-2100
Fax: 535-1533
URL
NorthAmerica
: http:semiconductor.hitachi.com/
Europe
: http://www.hitachi-eu.com/hel/ecg
Asia (Singapore)
: http://www.has.hitachi.com.sg/grp3/sicd/index.htm
Asia (Taiwan)
: http://www.hitachi.com.tw/E/Product/SICD_Frame.htm
Asia (HongKong)
: http://www.hitachi.com.hk/eng/bo/grp3/index.htm
Japan
: http://www.hitachi.co.jp/Sicd/indx.htm
Hitachi Asia Ltd.
Taipei Branch Office
3F, Hung Kuo Building. No.167,
Tun-Hwa North Road, Taipei (105)
Tel: <886> (2) 2718-3666
Fax: <886> (2) 2718-8180
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower, World Finance Centre,
Harbour City, Canton Road, Tsim Sha Tsui,
Kowloon, Hong Kong
Tel: <852> (2) 735 9218
Fax: <852> (2) 730 0281
Telex: 40815 HITEC HX
Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 778322
Hitachi Europe GmbH
Electronic components Group
Dornacher Strae 3
D-85622 Feldkirchen, Munich
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
For further information write to: