ChipFind - документация

Электронный компонент: SPA04N80C3

Скачать:  PDF   ZIP
www.docs.chipfind.ru
background image
2003-07-02
Page 1
SPP04N80C3
SPA04N80C3
Final data
Cool MOSTM
Power Transistor
V
DS
800
V
R
DS(on)
1.3
I
D
4
A
Feature
New revolutionary high voltage technology
Ultra low gate charge
Periodic avalanche rated
Extreme dv/dt rated
Ultra low effective capacitances
Improved transconductance
P-TO-220-3-31: Fully isolated package (2500 VAC; 1 minute)
P-TO220-3-31
P-TO220-3-1
P-TO220-3-31
1
2
3
Marking
04N80C3
04N80C3
Type
Package
Ordering Code
SPP04N80C3
P-TO220-3-1
Q67040-S4433
SPA04N80C3
P-TO220-3-31 Q67040-S4434
Maximum Ratings
Parameter
Symbol
Value
Unit
SPA
Continuous drain current
T
C
= 25 C
T
C
= 100 C
I
D
4
2.5
4
1)
2.5
1)
A
Pulsed drain current,
t
p
limited by
T
jmax
I
D puls
12
12
A
Avalanche energy, single pulse
I
D
=0.8A,
V
DD
=50V
E
AS
170
170
mJ
Avalanche energy, repetitive t
AR
limited by
T
jmax
2)
I
D
=4A,
V
DD
=50V
E
AR
0.1
0.1
Avalanche current, repetitive t
AR
limited by
T
jmax
I
AR
4
4
A
Gate source voltage
V
GS
20
20
V
Gate source voltage AC (f >1Hz)
V
GS
30
30
Power dissipation,
T
C
= 25C
P
tot
63
38
W
SPP
Operating and storage temperature
T
j ,
T
stg
-55...+150
C
background image
2003-07-02
Page 2
SPP04N80C3
SPA04N80C3
Final data
Maximum Ratings
Parameter
Symbol
Value
Unit
Drain Source voltage slope
V
DS
= 640 V, I
D
= 4 A,
T
j
= 125 C
dv/dt
50
V/ns
Thermal Characteristics
Parameter
Symbol
Values
Unit
min.
typ.
max.
Thermal resistance, junction - case
R
thJC
-
-
2
K/W
Thermal resistance, junction - case, FullPAK
R
thJC_FP
-
-
4
Thermal resistance, junction - ambient, leaded
R
thJA
-
-
62
Thermal resistance, junction - ambient, FullPAK
R
thJA_FP
-
-
80
Soldering temperature,
1.6 mm (0.063 in.) from case for 10s
3)
T
sold
-
-
260
C
Electrical Characteristics, at Tj=25C unless otherwise specified
Parameter
Symbol
Conditions
Values
Unit
min.
typ.
max.
Drain-source breakdown voltage
V
(BR)DSS V
GS
=0V, I
D
=0.25mA
800
-
-
V
Drain-Source avalanche
breakdown voltage
V
(BR)DS
V
GS
=0V, I
D
=4A
-
870
-
Gate threshold voltage
V
GS(th)
I
D
=240
A, VGS=VDS
2.1
3
3.9
Zero gate voltage drain current
I
DSS
V
DS
=800V,
V
GS
=0V,
T
j
=25C
T
j
=150C
-
-
0.5
-
10
100
A
Gate-source leakage current
I
GSS
V
GS
=20V,
V
DS
=0V
-
-
100
nA
Drain-source on-state resistance R
DS(on)
V
GS
=10V, I
D
=2.5A
T
j
=25C
T
j
=150C
-
-
1.1
3
1.3
-
Gate input resistance
R
G
f=1MHz, open drain
-
0.7
-
background image
2003-07-02
Page 3
SPP04N80C3
SPA04N80C3
Final data
Electrical Characteristics
Parameter
Symbol
Conditions
Values
Unit
min.
typ.
max.
Transconductance
g
fs
V
DS
2*I
D
*R
DS(on)max
,
I
D
=2.5A
-
3
-
S
Input capacitance
C
iss
V
GS
=0V,
V
DS
=25V,
f
=1MHz
-
570
-
pF
Output capacitance
C
oss
-
240
-
Reverse transfer capacitance
C
rss
-
12
-
Effective output capacitance,
4)
energy related
C
o(er)
V
GS
=0V,
V
DS
=0V to 480V
-
15.6
-
Effective output capacitance,
5)
time related
C
o(tr)
-
33.7
-
Turn-on delay time
t
d(on)
V
DD
=400V,
V
GS
=0/10V,
I
D
=4A,
R
G
=22
-
25
-
ns
Rise time
t
r
-
15
-
Turn-off delay time
t
d(off)
-
65
75
Fall time
t
f
-
12
16
Gate Charge Characteristics
Gate to source charge
Q
gs
V
DD
=640V, I
D
=4A
-
2.4
-
nC
Gate to drain charge
Q
gd
-
11
-
Gate charge total
Q
g
V
DD
=640V, I
D
=4A,
V
GS
=0 to 10V
-
20
26
Gate plateau voltage
V
(plateau)
V
DD
=640V, I
D
=4A
-
6
-
V
1Limited only by maximum temperature
2Repetitve avalanche causes additional power losses that can be calculated as P
AV
=
E
AR
*
f
.
3Soldering temperature for TO-263: 220C, reflow
4C
o(er)
is a fixed capacitance that gives the same stored energy as
C
oss
while
V
DS
is rising from 0 to 80% V
DSS
.
5C
o(tr)
is a fixed capacitance that gives the same charging time as
C
oss
while
V
DS
is rising from 0 to 80% V
DSS
.
background image
2003-07-02
Page 4
SPP04N80C3
SPA04N80C3
Final data
Electrical Characteristics
Parameter
Symbol
Conditions
Values
Unit
min.
typ.
max.
Inverse diode continuous
forward current
I
S
T
C
=25C
-
-
4
A
Inverse diode direct current,
pulsed
I
SM
-
-
12
Inverse diode forward voltage
V
SD
V
GS
=0V, I
F
=I
S
-
1
1.2
V
Reverse recovery time
t
rr
V
R
=640V, I
F
=I
S
,
di
F
/dt
=100A/s
-
520
-
ns
Reverse recovery charge
Q
rr
-
4
-
C
Peak reverse recovery current
I
rrm
-
12
-
A
Peak rate of fall of reverse
recovery current
di
rr
/dt
T
j
=25C
-
300
-
A/s
Typical Transient Thermal Characteristics
Symbol
Value
Unit
Symbol
Value
Unit
SPA
SPA
R
th1
0.033
0.033
K/W
C
th1
0.00008691 0.00008691 Ws/K
R
th2
0.063
0.063
C
th2
0.0003336
0.0003336
R
th3
0.113
0.113
C
th3
0.0004755
0.0004755
R
th4
0.432
0.237
C
th4
0.001405
0.001405
R
th5
0.423
0.515
C
th5
0.003503
0.006369
R
th6
0.14
2.517
C
th6
0.036
0.412
SPP
SPP
External Heatsink
T
j
T
case
T
am b
C
th1
C
th2
R
th1
R
th,n
C
th,n
P
tot
(t)
background image
2003-07-02
Page 5
SPP04N80C3
SPA04N80C3
Final data
1 Power dissipation
P
tot
= f (
T
C
)
0
20
40
60
80
100
120
C
160
T
C
0
5
10
15
20
25
30
35
40
45
50
55
60
W
70
SPP04N80C3
P
tot
2 Power dissipation FullPAK
P
tot
= f (
T
C
)
0
20
40
60
80
100
120
C
160
T
C
0
5
10
15
20
25
30
W
40
P
tot
3 Safe operating area
I
D
= f ( V
DS
)
parameter : D = 0 ,
T
C
=25C
10
0
10
1
10
2
10
3
V
V
DS
-2
10
-1
10
0
10
1
10
2
10
A

I
D
tp = 0.001 ms
tp = 0.01 ms
tp = 0.1 ms
tp = 1 ms
DC
4 Safe operating area FullPAK
I
D
= f (
V
DS
)
parameter: D = 0,
T
C
= 25C
10
0
10
1
10
2
10
3
V
V
DS
-2
10
-1
10
0
10
1
10
2
10
A

I
D
tp = 0.001 ms
tp = 0.01 ms
tp = 0.1 ms
tp = 1 ms
tp = 10 ms
DC
background image
2003-07-02
Page 6
SPP04N80C3
SPA04N80C3
Final data
5 Transient thermal impedance
Z
thJC
= f (t
p
)
parameter: D = t
p
/T
10
-7
10
-6
10
-5
10
-4
10
-3
10
-1
s
t
p
-3
10
-2
10
-1
10
0
10
1
10
K/W
Z
thJ
C
D = 0.5
D = 0.2
D = 0.1
D = 0.05
D = 0.02
D = 0.01
single pulse
6 Transient thermal impedance FullPAK
Z
thJC
= f (
t
p
)
parameter: D =
t
p
/t
10
-7
10
-6
10
-5
10
-4
10
-3
10
-2
10
-1
10
1
s
t
p
-3
10
-2
10
-1
10
0
10
1
10
K/W
Z
thJ
C
D = 0.5
D = 0.2
D = 0.1
D = 0.05
D = 0.02
D = 0.01
single pulse
7 Typ. output characteristic
I
D
= f (
V
DS
);
T
j
=25C
parameter: t
p
= 10 s,
V
GS
0
4
8
12
16
20
V
26
V
DS
0
1
2
3
4
5
6
7
8
9
10
11
A
13

I
D
6.5V
6V
5.5V
5V
4V
20V
8V
7V
8 Typ. output characteristic
I
D
= f (
V
DS
);
T
j
=150C
parameter: t
p
= 10 s,
V
GS
0
4
8
12
16
20
V
26
V
DS
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
A
6.5

I
D
5.5V
5V
4.5V
4V
20V
6.5V
6V
background image
2003-07-02
Page 7
SPP04N80C3
SPA04N80C3
Final data
9 Typ. drain-source on resistance
R
DS(on)
=
f
(I
D
)
parameter:
T
j
=150C,
V
GS
0
1
2
3
4
5
A
6.5
I
D
2
3
4
5
6
7
8
9
10
11
12
13
15

R
D
S
(
on)
5.5V
6V
4V
4.5V
5V
20V
10 Drain-source on-state resistance
R
DS(on)
= f (T
j
)
parameter : I
D
= 2.5 A,
V
GS
= 10 V
-60
-20
20
60
100
C
180
T
j
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
6
7.5
SPP04N80C3
R
DS(on)
typ
98%
11 Typ. transfer characteristics
I
D
= f ( V
GS
); V
DS
2 x I
D
x R
DS(on)max
parameter: t
p
= 10 s
0
2
4
6
8
10
12
14
16
V
20
V
GS
0
1
2
3
4
5
6
7
8
9
10
11
A
13

I
D
25C
150C
12 Typ. gate charge
V
GS
= f (Q
Gate
)
parameter: I
D
= 4 A pulsed
0
4
8
12
16
20
24
28
nC
34
Q
Gate
0
2
4
6
8
10
12
V
16
SPP04N80C3
V
GS
0,8 V
DS max
DS max
V
0,2
background image
2003-07-02
Page 8
SPP04N80C3
SPA04N80C3
Final data
13 Forward characteristics of body diode
I
F
= f (V
SD
)
parameter: Tj , t
p
= 10 s
0
0.4
0.8
1.2
1.6
2
2.4
V
3
V
SD
-1
10
0
10
1
10
2
10
A
SPP04N80C3
I
F
T
j
= 25 C typ
T
j
= 25 C (98%)
T
j
= 150 C typ
T
j
= 150 C (98%)
14 Avalanche SOA
I
AR
= f (t
AR
)
par.:
T
j
150 C
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
4
s
t
AR
0
0.5
1
1.5
2
2.5
3
A
4

I
AR
Tj(START)=25C
Tj(START)=125C
15 Avalanche energy
E
AS
= f (
T
j
)
par.: I
D
= 0.8 A,
V
DD
= 50 V
25
50
75
100
C
150
T
j
0
20
40
60
80
100
120
140
mJ
180

E
AS
16 Drain-source breakdown voltage
V
(BR)DSS
= f (
T
j
)
-60
-20
20
60
100
C
180
T
j
720
740
760
780
800
820
840
860
880
900
920
940
V
980
SPP04N80C3
V
(BR)DSS
background image
2003-07-02
Page 9
SPP04N80C3
SPA04N80C3
Final data
17 Avalanche power losses
P
AR
= f (
f
)
parameter:
E
AR
=0.1mJ
10
4
10
5
10
6
Hz
f
0
10
20
30
40
50
60
70
80
W
100

P
AR
18 Typ. capacitances
C = f (
V
DS
)
parameter:
V
GS
=0V, f=1 MHz
0
100
200
300
400
500
600
V
800
V
DS
0
10
1
10
2
10
3
10
4
10
pF

C
C
iss
C
oss
C
rss
19 Typ.
C
oss
stored energy
E
oss
=
f
(
V
DS
)
0
150
300
450
600
V
825
V
DS
0
0.5
1
1.5
2
2.5
3
3.5
J
4.5

E
oss
background image
2003-07-02
Page 10
SPP04N80C3
SPA04N80C3
Final data
Definition of diodes switching characteristics
background image
2003-07-02
Page 11
SPP04N80C3
SPA04N80C3
Final data
P-TO-220-3-1
A
B
A
0.25
M
2.8
15.38
0.6
2.54
0.75
0.1
0.13
1.27
4.44
B
9.98
0.48
0.05
All metal surfaces tin plated, except area of cut.
C
0.2
10
0.4
3.7
C
0.5
0.1
0.9
5.23
13.5
0.5
3x
Metal surface min. x=7.25, y=12.3
2x
0.2
0.22
1.17
0.2
2.51
P-TO-220-3-31 (FullPAK)
Please refer to mounting instructions (application note AN-TO220-3-31-01)
background image
2003-07-02
Page 12
SPP04N80C3
SPA04N80C3
Final data
Published by
Infineon Technologies AG,
Bereichs Kommunikation
St.-Martin-Strasse 53,
D-81541 Mnchen
Infineon Technologies AG 1999
All Rights Reserved.

Attention please!
The information herein is given to describe certain components and shall not be considered as warranted
characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement,
regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list).

Warnings
Due to technical requirements components may contain dangerous substances.
For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device
or system Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.