ChipFind - документация

Электронный компонент: HUF76137S3S

Скачать:  PDF   ZIP
6-142
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
UltraFETTM is a trademark of Intersil Corporation. PSPICETM is a trademark of MicroSim Corporation.
http://www.intersil.com or 407-727-9207
|
Copyright
Intersil Corporation 1999
HUF76137P3, HUF76137S3S
75A, 30V, 0.009 Ohm, N-Channel, Logic
Level UltraFET Power MOSFETs
These N-Channel power MOSFETs
are manufactured using the
innovative UltraFETTM process.
This advanced process technology
achieves the lowest possible on-resistance per silicon area,
resulting in outstanding performance. This device is capable
of withstanding high energy in the avalanche mode and the
diode exhibits very low reverse recovery time and stored
charge. It was designed for use in applications where power
efficiency is important, such as switching regulators,
switching converters, motor drivers, relay drivers, low-
voltage bus switches, and power management in portable
and battery-operated products.
Formerly developmental type TA76137.
Features
Logic Level Gate Drive
75A, 30V
Ultra Low On-Resistance, r
DS(ON)
= 0.009
Temperature Compensating PSPICETM Model
Temperature Compensating SABER Model
Thermal Impedance SPICE Model
Thermal Impedance SABER Model
Peak Current vs Pulse Width Curve
UIS Rating Curve
Related Literature
- TB334, "Guidelines for Soldering Surface Mount
Components to PC Boards"
Symbol
Packaging
Ordering Information
PART NUMBER
PACKAGE
BRAND
HUF76137P3
TO-220AB
76137P
HUF76137S3S
TO-263AB
76137S
NOTE: When ordering, use the entire part number. Add the suffix T to
obtain the TO-263AB variant in tape and reel, e.g., HUF76137S3ST.
D
G
S
JEDEC TO-220AB
JEDEC TO-263AB
DRAIN
SOURCE
GATE
DRAIN
(FLANGE)
GATE
SOURCE
DRAIN
(FLANGE)
Data Sheet
September 1999
File Number
4398.6
6-143
Absolute Maximum Ratings
T
C
= 25
o
C, Unless Otherwise Specified
UNITS
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
DSS
30
V
Drain to Gate Voltage (R
GS
= 20k
) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
DGR
30
V
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
GS
16
V
Drain Current
Continuous (T
C
= 25
o
C, V
GS
= 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
D
Continuous (T
C
= 100
o
C, V
GS
= 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
D
Continuous (T
C
= 100
o
C, V
GS
= 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
D
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
DM
75
55
52
Figure 4
A
A
A
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E
AS
Figures 6, 17, 18
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
D
Derate Above 25
o
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
145
1.16
W
W/
o
C
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
J
, T
STG
-40 to 150
o
C
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
L
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
pkg
300
260
o
C
o
C
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. T
J
= 25
o
C to 150
o
C.
Electrical Specifications
T
A
= 25
o
C, Unless Otherwise Specified
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
OFF STATE SPECIFICATIONS
Drain to Source Breakdown Voltage
BV
DSS
I
D
= 250
A, V
GS
= 0V (Figure 12)
30
-
-
V
Zero Gate Voltage Drain Current
I
DSS
V
DS
= 25V, V
GS
= 0V
-
-
1
A
V
DS
= 25V, V
GS
= 0V, T
C
= 150
o
C
-
-
250
A
Gate to Source Leakage Current
I
GSS
V
GS
=
16V
-
-
100
nA
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage
V
GS(TH)
V
GS
= V
DS
, I
D
= 250
A (Figure 11)
1
-
3
V
Drain to Source On Resistance
r
DS(ON)
I
D
= 75A, V
GS
= 10V (Figures 9, 10)
-
0.0075
0.009
I
D
= 55A, V
GS
= 5V (Figure 9)
-
0.010
0.0125
I
D
= 52A, V
GS
= 4.5V (Figure 9)
-
0.011
0.014
THERMAL SPECIFICATIONS
Thermal Resistance Junction to Case
R
JC
(Figure 3)
-
-
0.86
o
C/W
Thermal Resistance Junction to Ambient
R
JA
TO-220 and TO-263
-
-
62
o
C/W
SWITCHING SPECIFICATIONS (V
GS
= 4.5V)
Turn-On Time
t
ON
V
DD
= 15V, I
D
52A,
R
L
= 0.289
, V
GS
=
4.5V,
R
GS
= 5.1
(Figures 15, 21, 22)
-
-
420
ns
Turn-On Delay Time
t
d(ON)
-
20
-
ns
Rise Time
t
r
-
260
-
ns
Turn-Off Delay Time
t
d(OFF)
-
28
-
ns
Fall Time
t
f
-
38
-
ns
Turn-Off Time
t
OFF
-
-
100
ns
HUF76137P3, HUF76137S3S
6-144
SWITCHING SPECIFICATIONS (V
GS
= 10V)
Turn-On Time
t
ON
V
DD
= 15V, I
D
75A,
R
L
= 0.20
, V
GS
=
10V,
R
GS
= 5.6
(Figures 16, 21, 22)
-
-
225
ns
Turn-On Delay Time
t
d(ON)
-
10
-
ns
Rise Time
t
r
-
140
-
ns
Turn-Off Delay Time
t
d(OFF)
-
45
-
ns
Fall Time
t
f
-
35
-
ns
Turn-Off Time
t
OFF
-
-
120
ns
GATE CHARGE SPECIFICATIONS
Total Gate Charge
Q
g(TOT)
V
GS
= 0V to 10V
V
DD
= 15V,
I
D
55A,
R
L
= 0.273
I
g(REF)
= 1.0mA
(Figures 14, 19, 20)
-
55
72
nC
Gate Charge at 5V
Q
g(5)
V
GS
= 0V to 5V
-
31
40
nC
Threshold Gate Charge
Q
g(TH)
V
GS
= 0V to 1V
-
2.2
2.9
nC
Gate to Source Gate Charge
Q
gs
-
6.00
-
nC
Gate to Drain "Miller" Charge
Q
gd
-
15.50
nC
CAPACITANCE SPECIFICATIONS
Input Capacitance
C
ISS
V
DS
= 25V, V
GS
= 0V,
f = 1MHz
(Figure 13)
-
2100
-
pF
Output Capacitance
C
OSS
-
1050
-
pF
Reverse Transfer Capacitance
C
RSS
-
225
-
pF
Electrical Specifications
T
A
= 25
o
C, Unless Otherwise Specified (Continued)
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
Source to Drain Diode Specifications
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
Source to Drain Diode Voltage
V
SD
I
SD
= 55A
-
-
1.25
V
Reverse Recovery Time
t
rr
I
SD
= 55A, dI
SD
/dt = 100A/
s
-
-
77
ns
Reverse Recovered Charge
Q
RR
I
SD
= 55A, dI
SD
/dt = 100A/
s
-
-
143
nC
Typical Performance Curves
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
T
A
, AMBIENT TEMPERATURE (
o
C)
PO
WER DISSIP
A
TION MUL
TIPLIER
0
0
25
50
75
100
150
0.2
0.4
0.6
0.8
1.0
1.2
125
40
0
25
50
75
100
125
I
D
, DRAIN CURRENT (A)
T
C
, CASE TEMPERATURE (
o
C)
80
150
20
60
V
GS
= 4.5V
V
GS
= 10V
HUF76137P3, HUF76137S3S
6-145
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
FIGURE 4. PEAK CURRENT CAPABILITY
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING
CAPABILITY
Typical Performance Curves
(Continued)
t, RECTANGULAR PULSE DURATION (s)
10
-5
10
-1
10
0
2
0.1
1
10
-2
Z
JC
, NORMALIZED
THERMAL IMPED
ANCE
0.01
10
-4
10
-3
SINGLE PULSE
NOTES:
DUTY FACTOR: D = t
1
/t
2
PEAK T
J
= P
DM
x Z
JC
x R
JC
+ T
C
P
DM
t
1
t
2
10
1
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.01
0.02
T
C
= 25
o
C
I
=
I
25
150 - T
C
125
FOR TEMPERATURES
ABOVE 25
o
C DERATE PEAK
CURRENT AS FOLLOWS:
V
GS
= 10V
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
I
DM
, PEAK CURRENT (A)
2000
50
10
-5
10
-4
10
-3
10
-2
10
-1
10
0
10
1
t, PULSE WIDTH (s)
1000
V
GS
= 5V
T
J
= MAX RATED
T
C
= 25
o
C
100
s
10ms
1ms
BV
DSS MAX
= 30V
LIMITED BY r
DS(ON)
AREA MAY BE
OPERATION IN THIS
100
1
V
DS
, DRAIN TO SOURCE VOLTAGE (V)
1
100
1000
10
I
D
, DRAIN CURRENT (A)
10
1
10
100
100
0.01
2000
1
I
AS
, A
V
ALANCHE CURRENT (A)
t
AV
, TIME IN AVALANCHE (ms)
t
AV
= (L)(I
AS
)/(1.3*RATED BV
DSS
- V
DD
)
If R = 0
If R
0
t
AV
= (L/R)ln[(I
AS
*R)/(1.3*RATED BV
DSS
- V
DD
) +1]
STARTING T
J
= 25
o
C
STARTING T
J
= 150
o
C
0.1
10
0.001
1000
HUF76137P3, HUF76137S3S
6-146
FIGURE 7. TRANSFER CHARACTERISTICS
FIGURE 8. SATURATION CHARACTERISTICS
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
FIGURE 10. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
Typical Performance Curves
(Continued)
150
o
C
0
2
3
4
5
1
0
30
90
120
I
D,
DRAIN CURRENT (A)
V
GS
, GATE TO SOURCE VOLTAGE (V)
-40
o
C
25
o
C
PULSE DURATION = 80
s
DUTY CYCLE = 0.5% MAX
V
DD
= 15V
150
60
V
GS
= 10V
V
GS
= 3.5V
V
GS
= 4V
0
30
90
0
1
2
3
4
5
120
I
D
, DRAIN CURRENT (A)
V
DS
, DRAIN TO SOURCE VOLTAGE (V)
V
GS
= 5V
PULSE DURATION = 80
s
T
C
= 25
o
C
V
GS
= 3V
V
GS
= 4.5V
150
V
DS
, DRAIN TO SOURCE VOLTAGE (V)
60
DUTY CYCLE = 0.5% MAX
8
12
16
20
4
4
V
GS
, GATE TO SOURCE VOLTAGE (V)
2
6
10
8
I
D
= 75A
I
D
= 50A
I
D
= 25A
PULSE DURATION = 80
s
r
DS(ON)
, DRAIN T
O
SOURCE
ON RESIST
ANCE (m
)
DUTY CYCLE = 0.5% MAX
-60
0
60
120
NORMALIZED DRAIN T
O
SOURCE
T
J
, JUNCTION TEMPERATURE (
o
C)
ON RESIST
ANCE
180
PULSE DURATION = 80
s
0.8
1.0
1.2
1.4
1.6
DUTY CYCLE = 0.5% MAX
V
GS
= 10V, I
D
= 75A
-60
0
60
120
0.4
0.6
1.0
1.2
NORMALIZED GA
TE
T
J
, JUNCTION TEMPERATURE (
o
C)
THRESHOLD V
O
L
T
A
G
E
V
GS
= V
DS
, I
D
= 250
A
180
0.8
1.15
1.05
1.00
0.95
0.90
-60
0
60
120
T
J
, JUNCTION TEMPERATURE (
o
C)
NORMALIZED DRAIN T
O
SOURCE
BREAKDO
WN V
O
L
T
A
G
E
I
D
= 250
A
180
1.10
HUF76137P3, HUF76137S3S
6-147
FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.
FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT
GATE CURRENT
FIGURE 15. SWITCHING TIME vs GATE RESISTANCE
FIGURE 16. SWITCHING TIME vs GATE RESISTANCE
Test Circuits and Waveforms
FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 18. UNCLAMPED ENERGY WAVEFORMS
Typical Performance Curves
(Continued)
C
OSS
3000
2000
0
0
5
15
25
C, CAP
A
CIT
ANCE (pF)
2500
V
DS
, DRAIN TO SOURCE VOLTAGE (V)
1500
30
500
C
ISS
C
RSS
10
20
1000
V
GS
= 0V, f = 1MHz
C
ISS
= C
GS
+ C
GD
C
RSS
= C
GD
C
OSS
C
DS
+ C
GD
10
8
6
4
0
V
GS
, GA
TE T
O
SOURCE V
O
L
T
A
GE (V)
V
DD
= 15V
2
50
0
Q
g
, GATE CHARGE (nC)
10
I
D
= 75A
I
D
= 50A
I
D
= 25A
WAVEFORMS IN
DESCENDING ORDER:
30
20
40
60
200
20
30
40
50
0
1000
800
400
0
10
SWITCHING TIME (ns)
R
GS
, GATE TO SOURCE RESISTANCE (
)
V
GS
= 4.5V, V
DD
= 15V, I
D
= 52A, R
L
= 0.289
600
t
r
t
f
t
d(ON)
t
d(OFF)
100
20
30
40
50
0
400
300
200
0
10
SWITCHING TIME (ns)
R
GS
, GATE TO SOURCE RESISTANCE (
)
t
d(OFF)
t
d(ON)
V
GS
= 10V, V
DD
= 15V, I
D
= 75A, R
L
= 0.20
t
r
t
f
t
P
V
GS
0.01
L
I
AS
+
-
V
DS
V
DD
R
G
DUT
VARY t
P
TO OBTAIN
REQUIRED PEAK I
AS
0V
V
DD
V
DS
BV
DSS
t
P
I
AS
t
AV
0
HUF76137P3, HUF76137S3S
6-148
FIGURE 19. GATE CHARGE TEST CIRCUIT
FIGURE 20. GATE CHARGE WAVEFORMS
FIGURE 21. SWITCHING TIME TEST CIRCUIT
FIGURE 22. SWITCHING TIME WAVEFORM
Test Circuits and Waveforms
(Continued)
R
L
V
GS
+
-
V
DS
V
DD
DUT
I
g(REF)
V
DD
Q
g(TH)
V
GS
= 1V
Q
g(5)
V
GS
= 5V
Q
g(TOT)
V
GS
= 10
V
DS
V
GS
I
g(REF)
0
0
V
GS
R
L
R
GS
DUT
+
-
V
DD
V
DS
V
GS
t
ON
t
d(ON)
t
r
90%
10%
V
DS
90%
10%
t
f
t
d(OFF)
t
OFF
90%
50%
50%
10%
PULSE WIDTH
V
GS
0
0
HUF76137P3, HUF76137S3S
6-149
PSPICE Electrical Model
SUBCKT HUF76137 2 1 3 ;
REV May 1998
CA 12 8 3.1e-9
CB 15 14 3.1e-9
CIN 6 8 1.88e-9
DBODY 7 5 DBODYMOD
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 33.7
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
IT 8 17 1
LDRAIN 2 5 1e-9
LGATE 1 9 6.73e-9
LSOURCE 3 7 2.63e-9
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 1.2e-3
RGATE 9 20 1
RLDRAIN 2 5 10
RLGATE 1 9 67.3
RLSOURCE 3 7 26.3
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 5.1e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A 6 12 13 8 S1AMOD
S1B 13 12 13 8 S1BMOD
S2A 6 15 14 13 S2AMOD
S2B 13 15 14 13 S2BMOD
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*500),4))}
.MODEL DBODYMOD D (IS = 2.5e-12 IKF = 4 RS = 3.65e-3 TRS1 = 3e-4 TRS2 = 6e-6 CJO = 3.1e-9 TT = 9e-8 M = 4e-1 XTI =5.2 )
.MODEL DBREAKMOD D (RS = 1.25e-2 TRS1 = 3e-3 TRS2 = -3.5e-5 IKF = 10)
.MODEL DPLCAPMOD D (CJO = 2.5e-9 IS = 1e-30 N = 10 M = 7.5e-1)
.MODEL MMEDMOD NMOS (VTO = 1.73 KP = 2 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1)
.MODEL MSTROMOD NMOS (VTO = 2.08 KP = 130 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 1.38 KP =1e-2 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 10 RS = 1e-1)
.MODEL RBREAKMOD RES (TC1 = 1e-3 TC2 = -1e-9)
.MODEL RDRAINMOD RES (TC1 = 1.1e-2 TC2 = 1e-5)
.MODEL RSLCMOD RES (TC1 = 7e-3 TC2 = -7e-9)
.MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 8e-6)
.MODEL RVTHRESMOD RES (TC1 = -1.8e-3 TC2 = -1e-5)
.MODEL RVTEMPMOD RES (TC1 = -1.65e-3 TC2 = -1e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -6.5 VOFF= -0.5)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.5 VOFF= -6.5)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.5 VOFF= 0.5)
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.5 VOFF= -1.5)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options
; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
18
22
+
-
6
8
+
-
5
51
+
-
19
8
+
-
17
18
6
8
+
-
5
8
+
-
RBREAK
RVTEMP
VBAT
RVTHRES
IT
17
18
19
22
12
13
15
S1A
S1B
S2A
S2B
CA
CB
EGS
EDS
14
8
13
8
14
13
MWEAK
EBREAK
DBODY
RSOURCE
SOURCE
11
7
3
LSOURCE
RLSOURCE
CIN
RDRAIN
EVTHRES
16
21
8
MMED
MSTRO
DRAIN
2
LDRAIN
RLDRAIN
DBREAK
DPLCAP
ESLC
RSLC1
10
5
51
50
RSLC2
1
GATE
RGATE
EVTEMP
9
ESG
LGATE
RLGATE
20
+
-
+
-
+
-
6
HUF76137P3, HUF76137S3S
6-150
SABER Electrical Model
nom temp=25 deg c 30v LL Ultrafet
REV May1998
template huf76137 n2,n1,n3
electrical n2,n1,n3
{
var i iscl
d..model dbodymod = (is=2.5e-12,xti=5.2,cjo=3.1e-9,tt=9e-8,m=4e-1)
d..model dbreakmod = ()
d..model dplcapmod = (cjo=2.5e-9,is=1e-30,n=10,m=7.5e-1)
m..model mmedmod = (type=_n,vto=1.73,kp=2,is=1e-30, tox=1)
m..model mstrongmod = (type=_n,vto=2.08,kp=130,is=1e-30, tox=1)
m..model mweakmod = (type=_n,vto=1.38,kp=1e-2,is=1e-30, tox=1)
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-6.5,voff=-0.5)
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-0.5,voff=-6.5)
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-1.5,voff=0.5)
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=0.5,voff=-1.5)
c.ca n12 n8 = 3.1e-9
c.cb n15 n14 = 3.1e-9
c.cin n6 n8 = 1.88e-9
d.dbody n7 n71 = model=dbodymod
d.dbreak n72 n11 = model=dbreakmod
d.dplcap n10 n5 = model=dplcapmod
i.it n8 n17 = 1
l.ldrain n2 n5 = 1e-9
l.lgate n1 n9 = 6.73e-9
l.lsource n3 n7 = 26.3e-9
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
res.rbreak n17 n18 = 1, tc1=1e-3,tc2=-1e-9
res.rdbody n71 n5 =3.65e-3, tc1=3e-4, tc2=6e-6
res.rdbreak n72 n5 =1.25e-2, tc1=3e-3, tc2=-3.5e-5
res.rdrain n50 n16 = 1.2e-3, tc1=1.1e-2,tc2=1e-5
res.rgate n9 n20 = 1
res.rldrain n2 n5 = 10
res.rlgate n1 n9 = 67.3
res.rlsource n3 n7 = 26.3
res.rslc1 n5 n51 = 1e-6, tc1=7e-3,tc2=-7e-9
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 5.1e-3, tc1=e-3,tc2=8e-6
res.rvtemp n18 n19 = 1, tc1=-1.8e-3,tc2=-1e-5
res.rvthres n22 n8 = 1, tc1=-1.65e-3,tc2=-1e-6
spe.ebreak n11 n7 n17 n18 = 33.7
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/500))** 4))
}
}
18
22
+
-
6
8
+
-
19
8
+
-
17
18
6
8
+
-
5
8
+
-
RBREAK
RVTEMP
VBAT
RVTHRES
IT
17
18
19
22
12
13
15
S1A
S1B
S2A
S2B
CA
CB
EGS
EDS
14
8
13
8
14
13
MWEAK
EBREAK
DBODY
RSOURCE
SOURCE
11
7
3
LSOURCE
RLSOURCE
CIN
RDRAIN
EVTHRES
16
21
8
MMED
MSTRO
DRAIN
2
LDRAIN
RLDRAIN
DBREAK
DPLCAP
ISCL
RSLC1
10
5
51
50
RSLC2
1
GATE
RGATE
EVTEMP
9
ESG
LGATE
RLGATE
20
+
-
+
-
+
-
6
RDBODY
RDBREAK
72
71
HUF76137P3, HUF76137S3S
6-151
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
SPICE Thermal Model
REV May 1998
HUF76137
CTHERM1 th 6 1.0e-6
CTHERM2 6 5 2.0e-6
CTHERM3 5 4 6.0e-3
CTHERM4 4 3 9.5e-3
CTHERM5 3 2 3.0e-2
CTHERM6 2 tl 1.8
RTHERM1 th 6 1.0e-4
RTHERM2 6 5 1.4e-3
RTHERM3 5 4 2.9e-2
RTHERM4 4 3 1.8e-1
RTHERM5 3 2 2.6e-1
RTHERM6 2 tl 4.0e-2
SABER Thermal Model
Saber thermal model HUF76137
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6 = 1.0e-6
ctherm.ctherm2 6 5 = 2.0e-6
ctherm.ctherm3 5 4 = 6.0e-3
ctherm.ctherm4 4 3 = 9.5e-3
ctherm.ctherm5 3 2 = 3.0e-1
ctherm.ctherm6 2 tl = 1.8
rtherm.rtherm1 th 6 = 1.0e-4
rtherm.rtherm2 6 5 = 1.4e-3
rtherm.rtherm3 5 4 = 2.9e-2
rtherm.rtherm4 4 3 = 1.8e-1
rtherm.rtherm5 3 2 = 2.6e-1
rtherm.rtherm6 2 tl = 4.0e-2
}
RTHERM4
RTHERM6
RTHERM5
RTHERM3
RTHERM2
RTHERM1
CTHERM4
CTHERM6
CTHERM5
CTHERM3
CTHERM2
CTHERM1
tl
2
3
4
5
6
th
JUNCTION
CASE
HUF76137P3, HUF76137S3S