ChipFind - документация

Электронный компонент: CPU165MU

Скачать:  PDF   ZIP
C-733
CPU165MU
IGBT SIP MODULE
Features
Parameter
Typ.
Max.
Units
R
JC
(IGBT)
Junction-to-Case, each IGBT, one IGBT in conduction
--
1.5
R
JC
(DIODE)
Junction-to-Case, each diode, one diode in conduction
--
2.0
C/W
R
CS
(MODULE)
Case-to-Sink,flat,greased surface
0.1
--
Wt
Weight of module
20 (0.7)
--
g (oz)
Fully isolated printed circuit board mount package
Switching-loss rating includes all "tail" losses
HEXFRED
TM
soft ultrafast diodes
Optimized for high operating frequency (over 5kHz)
See Fig. 1 for Current vs. Frequency curve
PD - 5.029
Ultra-Fast IGBT
Parameter
Max.
Units
V
CES
Collector-to-Emitter Voltage
600
V
I
C
@ T
C
= 25C
Continuous Collector Current, each IGBT
33
I
C
@ T
C
= 100C
Continuous Collector Current, each IGBT
17
I
CM
Pulsed Collector Current
100
A
I
LM
Clamped Inductive Load Current
100
I
F
@ T
C
= 100C
Diode Continuous Forward Current
15
I
FM
Diode Maximum Forward Current
100
V
GE
Gate-to-Emitter Voltage
20
V
V
ISOL
Isolation Voltage, any terminal to case, 1 minute
2500
V
RMS
P
D
@ T
C
= 25C
Maximum Power Dissipation, each IGBT
83
W
P
D
@ T
C
= 100C
Maximum Power Dissipation, each IGBT
33
T
J
Operating Junction and
-40 to +150
T
STG
Storage Temperature Range
C
Soldering Temperature, for 10 sec.
300 (0.063 in. (1.6mm) from case)
Mounting torque, 6-32 or M3 screw.
5-7 lbfin (0.55-0.8 Nm)
Thermal Resistance
Absolute Maximum Ratings
Product Summary
Output Current in a Typical 20 kHz Motor Drive
10 A
RMS
with T
C
= 90C, T
J
= 125C, Supply Voltage 360Vdc,
Power Factor 0.8, Modulation Depth 80% (See Figure 1)
Description
The IGBT technology is the key to International Rectifier's advanced line of
IMS (Insulated Metal Substrate) Power Modules. These modules are more
efficient than comparable bipolar transistor modules, while at the same time
having the simpler gate-drive requirements of the familiar power MOSFET.
This superior technology has now been coupled to a state of the art materials
system that maximizes power throughput with low thermal resistance. This
package is highly suited to motor drive applications and where space is at a
premium.
1,2
4
5
9
6,7
11,12
Q1
Q2
D1
D2
Revision 1
IMS-1
Next Data Sheet
Index
Previous Datasheet
To Order
C-734
CPU165MU
Pulse width
80s; duty factor
0.1%.
V
CC
=80%(V
CES
), V
GE
=20V, L=10H,
R
G
= 5.0
, ( See fig. 19 )
Pulse width 5.0s,
single shot.
Repetitive rating; V
GE
=20V, pulse width
limited by max. junction temperature.
( See fig. 20 )
Notes:
Parameter
Min. Typ. Max. Units
Conditions
Q
g
Total Gate Charge (turn-on)
--
108
140
I
C
= 27A
Q
ge
Gate - Emitter Charge (turn-on)
--
17
21
nC
V
CC
= 400V
Q
gc
Gate - Collector Charge (turn-on)
--
52
70
See Fig. 8
t
d(on)
Turn-On Delay Time
--
23
--
T
J
= 25C
t
r
Rise Time
--
28
--
ns
I
C
= 27A, V
CC
= 480V
t
d(off)
Turn-Off Delay Time
--
100
200
V
GE
= 15V, R
G
= 5.0
t
f
Fall Time
--
45
140
Energy losses include "tail" and
E
on
Turn-On Switching Loss
--
0.76
--
diode reverse recovery.
E
off
Turn-Off Switching Loss
--
0.26
--
mJ
See Fig. 9, 10, 11, 18
E
ts
Total Switching Loss
--
1.0
2.0
t
d(on)
Turn-On Delay Time
--
24
--
T
J
= 150C, See Fig. 9, 10, 11, 18
t
r
Rise Time
--
27
--
ns
I
C
= 27A, V
CC
= 480V
t
d(off)
Turn-Off Delay Time
--
180
--
V
GE
= 15V, R
G
= 5.0
t
f
Fall Time
--
130
--
Energy losses include "tail" and
E
ts
Total Switching Loss
--
3.7
--
mJ
diode reverse recovery.
C
ies
Input Capacitance
--
2900
--
V
GE
= 0V
C
oes
Output Capacitance
--
330
--
pF
V
CC
= 30V
See Fig. 7
C
res
Reverse Transfer Capacitance
--
41
--
= 1.0MHz
t
rr
Diode Reverse Recovery Time
--
50
75
ns
T
J
= 25C See Fig.
--
105
160
T
J
= 125C 14 I
F
= 25A
I
rr
Diode Peak Reverse Recovery Current
--
4.5
10
A
T
J
= 25C See Fig.
--
8.0
15
T
J
= 125C 15 V
R
= 200V
Q
rr
Diode Reverse Recovery Charge
--
112
375
nC
T
J
= 25C See Fig.
--
420 1200
T
J
= 125C 16 di/dt = 200A/s
di
(rec)M
/dt
Diode Peak Rate of Fall of Recovery
--
250
--
A/s
T
J
= 25C See Fig.
During t
b
--
160
--
T
J
= 125C 17
Switching Characteristics @ T
J
= 25C (unless otherwise specified)
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)CES
Collector-to-Emitter Breakdown Voltage
600
--
--
V
V
GE
= 0V, I
C
= 250A
V
(BR)CES
/
T
J
Temperature Coeff. of Breakdown Voltage
--
0.60
--
V/C
V
GE
= 0V, I
C
= 1.0mA
V
CE(on)
Collector-to-Emitter Saturation Voltage
--
1.8
2.3
I
C
= 17A
V
GE
= 15V
--
2.2
--
V
I
C
= 33A
See Fig. 2, 5
--
1.6
--
I
C
= 17A, T
J
= 150C
V
GE(th)
Gate Threshold Voltage
3.0
--
5.5
V
CE
= V
GE
, I
C
= 250A
V
GE(th)
/
T
J
Temperature Coeff. of Threshold Voltage
--
-13
-- mV/C V
CE
= V
GE
, I
C
= 250A
g
fe
Forward Transconductance
16
24
--
S
V
CE
= 100V, I
C
= 27A
I
CES
Zero Gate Voltage Collector Current
--
--
250
A
V
GE
= 0V, V
CE
= 600V
--
--
6500
V
GE
= 0V, V
CE
= 600V, T
J
= 150C
V
FM
Diode Forward Voltage Drop
--
1.3
1.7
V
I
C
= 25A
See Fig. 13
--
1.2
1.5
I
C
= 25A, T
J
= 150C
I
GES
Gate-to-Emitter Leakage Current
--
--
500
nA
V
GE
= 20V
Next Data Sheet
Index
Previous Datasheet
To Order
C-735
Fig. 1 - RMS Current and Output Power, Synthesized Sine Wave
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
CPU165MU
0
8
1 6
2 4
0 .1
1
1 0
1 0 0
f, F re q u e n cy (kH z)
L
o
a
d

C
u
r
r
e
n
t

(
A
)
T
o
t
a
l

O
u
t
p
u
t

P
o
w
e
r

(
k
W
)
0
S
T = 90C
T = 125C
Power Factor = 0.8
Modulation Depth = 0.8
V = 60% of Rated Voltage
C
J
C C
7 .4
5 .0
2 .5
1
10
100
1000
5
10
15
20
C
I



,

C
o
l
l
e
c
t
o
r
-
t
o
-
E
m
i
t
t
e
r

C
u
r
r
e
n
t

(
A
)
GE
T = 25C
T = 150C
J
J
V = 100V
5s PULSE WIDTH
CC
V , Gate-to-Emitter Voltage (V)
1
1 0
1 0 0
1 0 0 0
0 .1
1
1 0
C E
C
I



,

C
o
l
l
e
c
t
o
r
-
t
o
-
E
m
i
t
t
e
r

C
u
r
r
e
n
t

(
A
)
V , C o llector-to-E m itter V oltage (V )
T = 1 50 C
T = 2 5C
J
J
V = 15 V
20 s P U L S E W ID T H
G E
To Order
Next Data Sheet
Index
Previous Datasheet
C-736
Fig. 5 - Collector-to-Emitter Voltage vs.
Case Temperature
Fig. 4 - Maximum Collector Current vs.
Case Temperature
CPU165MU
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case
0 .0 1
0 .1
1
0 .0 0 0 0 1
0 .0 0 0 1
0 .0 0 1
0 .0 1
0 .1
1
1 0
t , R ectangular P ulse D uration (sec)
1
t
h
J
C
D = 0 .5 0
0.0 1
0.0 2
0 .05
0.1 0
0.2 0
SIN G LE P UL SE
(T H ER M A L R E SP O NS E )
T
h
e
r
m
a
l

R
e
s
p
o
n
s
e

(
Z








)
P
t
2
1
t
D M
N o te s:
1 . D u ty fa c to r D = t / t
2 . P e a k T = P x Z + T
1
2
J
D M
th J C
C
0
1 0
2 0
3 0
4 0
5 0
6 0
2 5
5 0
7 5
1 0 0
1 2 5
1 5 0
M
a
x
i
m
u
m

D
C

C
o
l
l
e
c
t
o
r

C
u
r
r
e
n
t

(
A
)
T , C ase T em perature (C )
C
V = 15 V
G E
1 .0
1 .5
2 .0
2 .5
3 .0
-6 0
-4 0
-2 0
0
2 0
4 0
6 0
8 0
1 0 0 1 2 0 1 4 0 1 6 0
T , C ase Tem perature (C )
C
C
E
V





,

C
o
l
l
e
c
t
o
r
-
t
o
-
E
m
i
t
t
e
r

V
o
l
t
a
g
e

(
V
)
V = 15 V
80 s P U L S E W ID T H
G E
I = 5 4A
I = 27 A
I = 14 A
C
C
C
To Order
Next Data Sheet
Index
Previous Datasheet
C-737
CPU165MU
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
Fig. 10 - Typical Switching Losses vs.
Case Temperature
0
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0
7 0 0 0
1
1 0
1 00
C E
C
,

C
a
p
a
c
i
t
a
n
c
e

(
p
F
)
V , C ollector-to-E m itter V oltage (V )
V = 0V, f = 1MHz
C = C + C , C SHORTED
C = C
C = C + C
GE
ies ge gc ce
res gc
oes ce gc
C
ies
C
res
C
oes
0
4
8
1 2
1 6
2 0
0
3 0
6 0
90
1 2 0
G
E
V





,

G
a
t
e
-
t
o
-
E
m
i
t
t
e
r

V
o
l
t
a
g
e

(
V
)
Q , Total G ate C harge (nC )
g
V = 4 80 V
I = 2 7A
C E
C
1 .5 0
1 .7 5
2 .0 0
2 .2 5
2 .5 0
0
1 0
2 0
3 0
4 0
5 0
G
T
o
t
a
l

S
w
i
t
c
h
i
n
g

L
o
s
s
e
s

(
m
J
)
R , G ate R esistance ( )
W
V = 48 0 V
V = 15 V
T = 25 C
I = 2 7A
C C
G E
C
C
0 .1
1
1 0
-6 0
-4 0
-2 0
0
2 0
4 0
6 0
8 0
1 0 0 1 2 0 1 4 0 1 6 0
C
T , C ase T em perature (C )
T
o
t
a
l

S
w
i
t
c
h
i
n
g

L
o
s
s
e
s

(
m
J
)
I = 5 4 A
I = 27 A
I = 14 A
C
C
C
R = 2 .0
V = 1 5V
V = 48 0V
G
GE
CC
To Order
Next Data Sheet
Index
Previous Datasheet