ChipFind - документация

Электронный компонент: IRF1302

Скачать:  PDF   ZIP
www.docs.chipfind.ru
background image
HEXFET
Power MOSFET
Description
Specifically designed for Automotive applications, this Stripe Planar
design of HEXFET
Power MOSFET utilizes the lastest processing
techniques to achieve extremely low on-resistance per silicon area.
Additional features of this design are a 175C junction operating
temperature, fast switching speed and improved repetitive avalanche
rating. These benefits combine to make this design an extremely efficient
and reliable device for use in Automotive applications and a wide variety
of other applications.
S
D
G
V
DSS
= 20V
R
DS(on)
= 4.0m
I
D
= 180A
10/31/02
www.irf.com
1
Benefits
Advanced Process Technology
Ultra Low On-Resistance
Dynamic dv/dt Rating
175C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
AUTOMOTIVE MOSFET
PD - 94591
IRF1302
TO-220AB
Parameter
Max.
Units
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
180
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ 10V
130
A
I
DM
Pulsed Drain Current
700
P
D
@T
C
= 25C
Power Dissipation
230
W
Linear Derating Factor
1.5
W/C
V
GS
Gate-to-Source Voltage
20
V
E
AS
Single Pulse Avalanche Energy
350
mJ
I
AR
Avalanche Current
See Fig.12a, 12b, 15, 16
A
E
AR
Repetitive Avalanche Energy
mJ
dv/dt
Peak Diode Recovery dv/dt
TBD
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
C
Absolute Maximum Ratings
Thermal Resistance
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
0.65
R
CS
Case-to-Sink, Flat, Greased Surface
0.50
C/W
R
JA
Junction-to-Ambient (PCB mount)
62
background image
IRF1302
2
www.irf.com
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
20
V
V
GS
= 0V, I
D
= 250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
0.021
V/C
Reference to 25C, I
D
= 1mA
R
DS(on)
Static Drain-to-Source On-Resistance
3.3
4.0
m
V
GS
= 10V, I
D
= 104A
V
GS(th)
Gate Threshold Voltage
2.0
4.0
V
V
DS
= 10V, I
D
= 250A
g
fs
Forward Transconductance
59
S
V
DS
= 15V, I
D
= 104A
20
A
V
DS
= 20V, V
GS
= 0V
250
V
DS
= 16V, V
GS
= 0V, T
J
= 150C
Gate-to-Source Forward Leakage
200
V
GS
= 20V
Gate-to-Source Reverse Leakage
-200
nA
V
GS
= -20V
Q
g
Total Gate Charge
79
120
I
D
= 104A
Q
gs
Gate-to-Source Charge
18
27
nC
V
DS
= 16V
Q
gd
Gate-to-Drain ("Miller") Charge
31
46
V
GS
= 10V
t
d(on)
Turn-On Delay Time
28
V
DD
= 11V
t
r
Rise Time
130
I
D
= 104A
t
d(off)
Turn-Off Delay Time
47
R
G
= 4.5
t
f
Fall Time
16
V
GS
= 10V
Between lead,
6mm (0.25in.)
from package
and center of die contact
C
iss
Input Capacitance
3600
V
GS
= 0V
C
oss
Output Capacitance
2370
pF
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
520
= 1.0MHz, See Fig. 5
C
oss
Output Capacitance
5710
V
GS
= 0V, V
DS
= 1.0V, = 1.0MHz
C
oss
Output Capacitance
2370
V
GS
= 0V, V
DS
= 16V, = 1.0MHz
C
oss
eff.
Effective Output Capacitance
3540
V
GS
= 0V, V
DS
= 0V to 16V
nH
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
L
D
Internal Drain Inductance
L
S
Internal Source Inductance
S
D
G
I
GSS
ns
4.5
7.5
I
DSS
Drain-to-Source Leakage Current
S
D
G
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
1.3
V
T
J
= 25C, I
S
= 104A, V
GS
= 0V
t
rr
Reverse Recovery Time
66
100
ns
T
J
= 25C, I
F
= 104A
Q
rr
Reverse RecoveryCharge
130
200
nC
di/dt = 100A/s
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Source-Drain Ratings and Characteristics
180
700
A
background image
IRF1302
www.irf.com
3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
-60
-40
-20
0
20
40
60
80
100
120
140
160
180
0.0
0.5
1.0
1.5
2.0
T , Junction Temperature
( C)
R
, D
r
a
i
n
-
to
-
S
o
u
r
ce
O
n
R
e
si
sta
n
c
e
(
N
or
m
a
l
i
z
ed)
J
D
S
(
on)
V
=
I
=
GS
D
10V
174A
4.0
5.0
6.0
7.0
VGS, Gate-to-Source Voltage (V)
10.00
100.00
1000.00
I D
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t
(
)
TJ = 25C
TJ = 175C
VDS = 15V
20s PULSE WIDTH
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
10000
I D
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
4.5V
20s PULSE WIDTH
Tj = 25C
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
10000
I D
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
4.5V
20s PULSE WIDTH
Tj = 175C
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
background image
IRF1302
4
www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
0
20
40
60
80
100
0
2
5
7
10
12
Q , Total Gate Charge (nC)
V ,
G
a
t
e
-
t
o-
Sour
c
e
Vol
t
age (
V
)
G
GS
I
=
D
104A
V
= 16V
DS
0.1
1
10
100
1000
0.2
0.7
1.2
1.7
2.2
V ,Source-to-Drain Voltage (V)
I
,
R
e
v
e
rs
e D
r
ai
n C
u
rrent
(A)
SD
SD
V = 0 V
GS
T = 175 C
J
T = 25 C
J
1
10
100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
100000
C
,

C
a
p
a
c
i
t
a
n
c
e
(
p
F
)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
1
10
100
VDS , Drain-toSource Voltage (V)
1
10
100
1000
10000
I D
,


D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
Tc = 25C
Tj = 175C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100sec
background image
IRF1302
www.irf.com
5
Fig 9. Maximum Drain Current Vs.
Case Temperature
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
V
DS
Pulse Width
1 s
Duty Factor
0.1 %
R
D
V
GS
R
G
D.U.T.
10V
+
-
V
DD
Fig 10a. Switching Time Test Circuit
Fig 10b. Switching Time Waveforms
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
25
50
75
100
125
150
175
0
50
100
150
200
I
,
D
r
ai
n C
u
r
r
ent
(
A
)
D
LIMITED BY PACKAGE
T
C
, Case Temperature (C)
0.01
0.1
1
0.00001
0.0001
0.001
0.01
0.1
1
Notes:
1. Duty factor D =
t / t
2. Peak T
= P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
T
her
m
a
l
Res
pons
e
(
Z
)
1
th
JC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)