ChipFind - документация

Электронный компонент: IRF2204

Скачать:  PDF   ZIP
Parameter
Max.
Units
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
210
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ 10V
150
A
I
DM
Pulsed Drain Current
850
P
D
@T
C
= 25C
Power Dissipation
330
W
Linear Derating Factor
2.2
W/C
V
GS
Gate-to-Source Voltage
20
V
E
AS
Single Pulse Avalanche Energy
460
mJ
I
AR
Avalanche Current
See Fig.12a, 12b, 15, 16
A
E
AR
Repetitive Avalanche Energy
mJ
T
J
Operating Junction and
-55 to + 175
C
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
Mounting Torque, 6-32 or M3 screw
10 lbfin (1.1Nm)
HEXFET
Power MOSFET
Specifically designed for Automotive applications, this HEXFET
Power MOSFET
utilizes the lastest processing techniques to achieve extremely low on-resistance
per silicon area. Additional features of this design are a 175C junction operating
temperature, fast switching speed and improved repetitive avalanche rating.
These features combine to make this design an extremely efficient and reliable
device for use in Automotive applications and a wide variety of other applications.
S
D
G
Absolute Maximum Ratings
V
DSS
= 40V
R
DS(on)
= 3.6m
I
D
= 210A
Description
08/07/02
www.irf.com
1
Advanced Process Technology
Ultra Low On-Resistance
Dynamic dv/dt Rating
175C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Features
Typical Applications
Electric Power Steering
14 Volts Automotive Electrical Systems
AUTOMOTIVE MOSFET
Thermal Resistance
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
0.45
R
CS
Case-to-Sink, Flat, Greased Surface
0.50
C/W
R
JA
Junction-to-Ambient
62
TO-220AB
IRF2204
PD - 94434
IRF2204
2
www.irf.com
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
40
V
V
GS
= 0V, I
D
= 250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
0.041
V/C
Reference to 25C, I
D
= 1mA
R
DS(on)
Static Drain-to-Source On-Resistance
3.0
3.6
m
V
GS
= 10V, I
D
= 130A
V
GS(th)
Gate Threshold Voltage
2.0
4.0
V
V
DS
= 10V, I
D
= 250A
g
fs
Forward Transconductance
120
S
V
DS
= 10V, I
D
= 130A
20
A
V
DS
= 40V, V
GS
= 0V
250
V
DS
= 32V, V
GS
= 0V, T
J
= 150C
Gate-to-Source Forward Leakage
200
V
GS
= 20V
Gate-to-Source Reverse Leakage
-200
nA
V
GS
= -20V
Q
g
Total Gate Charge
130
200
I
D
= 130A
Q
gs
Gate-to-Source Charge
35
52
nC
V
DS
= 32V
Q
gd
Gate-to-Drain ("Miller") Charge
39
59
V
GS
= 10V
t
d(on)
Turn-On Delay Time
15
V
DD
= 20V
t
r
Rise Time
140
I
D
= 130A
t
d(off)
Turn-Off Delay Time
62
R
G
= 2.5
t
f
Fall Time
110
V
GS
= 10V
Between lead,
6mm (0.25in.)
from package
and center of die contact
C
iss
Input Capacitance
5890
V
GS
= 0V
C
oss
Output Capacitance
1570
pF
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
130
= 1.0MHz, See Fig. 5
C
oss
Output Capacitance
8000
V
GS
= 0V, V
DS
= 1.0V, = 1.0MHz
C
oss
Output Capacitance
1370
V
GS
= 0V, V
DS
= 32V, = 1.0MHz
C
oss
eff.
Effective Output Capacitance
2380
V
GS
= 0V, V
DS
= 0V to 32V
nH
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
L
D
Internal Drain Inductance
L
S
Internal Source Inductance
S
D
G
I
GSS
ns
4.5
7.5
I
DSS
Drain-to-Source Leakage Current
S
D
G
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
1.3
V
T
J
= 25C, I
S
= 130A, V
GS
= 0V
t
rr
Reverse Recovery Time
68
100
ns
T
J
= 25C, I
F
= 130A
Q
rr
Reverse RecoveryCharge
120
180
nC
di/dt = 100A/s
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Source-Drain Ratings and Characteristics
210
850
A
IRF2204
www.irf.com
3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
-60
-40
-20
0
20
40
60
80
100
120
140
160
180
0.0
0.5
1.0
1.5
2.0
2.5
T , Junction Temperature
( C)
R
, D
r
a
i
n
-
to
-
S
o
u
r
ce
O
n
R
e
si
sta
n
c
e
(
N
or
m
a
l
i
z
ed)
J
D
S
(
on)
V
=
I
=
GS
D
10V
210A
1
10
100
1000
10000
0.1
1
10
100
20s PULSE WIDTH
T = 25
C
J
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , D
r
a
i
n
-
to
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(
A
)
DS
D
4.5V
1
10
100
1000
10000
0.1
1
10
100
20s PULSE WIDTH
T = 175
C
J
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , D
r
a
i
n
-
to
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(
A
)
DS
D
4.5V
4.0
5.0
6.0
7.0
8.0
9.0
10.0
VGS, Gate-to-Source Voltage (V)
10.00
100.00
1000.00
I D
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t
(
)
TJ = 25C
TJ = 175C
VDS = 25V
20s PULSE WIDTH
IRF2204
4
www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
0
30
60
90
120
150
0
2
4
6
8
10
12
Q , Total Gate Charge (nC)
V ,
G
a
t
e
-
t
o-
Sour
c
e
Vol
t
age (
V
)
G
GS
I
=
D
130A
V
= 20V
DS
V
= 32V
DS
0.1
1
10
100
1000
0.0
0.5
1.0
1.5
2.0
2.5
V ,Source-to-Drain Voltage (V)
I
,
R
e
v
e
rs
e D
r
ai
n C
u
rrent
(A)
SD
SD
V = 0 V
GS
T = 175 C
J
T = 25 C
J
1
10
100
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
100000
C
,

C
a
p
a
c
i
t
a
n
c
e
(
p
F
)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
1
10
100
VDS , Drain-toSource Voltage (V)
1
10
100
1000
10000
I D
,


D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
Tc = 25C
Tj = 175C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100sec
IRF2204
www.irf.com
5
Fig 9. Maximum Drain Current Vs.
Case Temperature
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
V
DS
Pulse Width
1
s
Duty Factor
0.1 %
R
D
V
GS
R
G
D.U.T.
10V
+
-
V
DD
25
50
75
100
125
150
175
0
50
100
150
200
250
T , Case Temperature
( C)
I
,
D
r
ai
n C
u
r
r
ent
(
A
)
C
D
LIMITED BY PACKAGE
Fig 10a. Switching Time Test Circuit
Fig 10b. Switching Time Waveforms
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
0.001
0.01
0.1
1
0.00001
0.0001
0.001
0.01
0.1
1
Notes:
1. Duty factor D =
t / t
2. Peak T
= P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
T
her
m
a
l R
e
s
pons
e
(
Z
)
1
th
JC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)