ChipFind - документация

Электронный компонент: IRF3205S

Скачать:  PDF   ZIP
IRF3205S/L
HEXFET
Power MOSFET
03/09/01
Thermal Resistance
www.irf.com
1
V
DSS
= 55V
R
DS(on)
= 8.0m
I
D
= 110A
S
D
G
Advanced HEXFET
Power MOSFETs from International Rectifier
utilize advanced processing techniques to achieve extremely low on-
resistance per silicon area. This benefit, combined with the fast
switching speed and ruggedized device design that HEXFET power
MOSFETs are well known for, provides the designer with an extremely
efficient and reliable device for use in a wide variety of applications.
The D
2
Pak is a surface mount power package capable of
accommodating die sizes up to HEX-4. It provides the highest power
capability and the lowest possible on-resistance in any existing surface
mount package. The D
2
Pak is suitable for high current applications
because of its low internal connection resistance and can dissipate up
to 2.0W in a typical surface mount application.
The through-hole version (IRF3205L) is available for low-profile
applications.
l
Advanced Process Technology
l
Ultra Low On-Resistance
l
Dynamic dv/dt Rating
l
175C Operating Temperature
l
Fast Switching
l
Fully Avalanche Rated
Description
D
2
Pak
IRF3205S
TO-262
IRF3205L
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
0.75
C/W
R
JA
Junction-to-Ambient (PCB mounted, steady-state)
*
40
PD - 94149
Absolute Maximum Ratings
Parameter
Max.
Units
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
110
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ 10V
80
A
I
DM
Pulsed Drain Current
390
P
D
@T
C
= 25C
Power Dissipation
200
W
Linear Derating Factor
1.3
W/C
V
GS
Gate-to-Source Voltage
20
V
I
AR
Avalanche Current
62
A
E
AR
Repetitive Avalanche Energy
20
mJ
dv/dt
Peak Diode Recovery dv/dt
5.0
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
C
Mounting torque, 6-32 or M3 srew
10 lbfin (1.1Nm)
IRF3205S/L
2
www.irf.com
S
D
G
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
1.3
V
T
J
= 25C, I
S
= 62A, V
GS
= 0V
t
rr
Reverse Recovery Time
69
104
ns
T
J
= 25C, I
F
= 62A
Q
rr
Reverse Recovery Charge
143
215
nC
di/dt = 100A/s
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Source-Drain Ratings and Characteristics
110
390
A
Starting T
J
= 25C, L = 138H
R
G
= 25
, I
AS
= 62A. (See Figure 12)
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
Notes:
I
SD
62A, di/dt
207A/s, V
DD
V
(BR)DSS
,
T
J
175C
Pulse width
400s; duty cycle
2%.
Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 75A.
*
When mounted on 1" square PCB ( FR-4 or G-10 Material ).
For recommended footprint and soldering techniques refer to application note #AN-994.
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
55
V
V
GS
= 0V, I
D
= 250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
0.057
V/C
Reference to 25C, I
D
= 1mA
R
DS(on)
Static Drain-to-Source On-Resistance
8.0
m
V
GS
= 10V, I
D
= 62A
V
GS(th)
Gate Threshold Voltage
2.0
4.0
V
V
DS
= V
GS
, I
D
= 250A
g
fs
Forward Transconductance
44
S
V
DS
= 25V, I
D
= 62A
25
A
V
DS
= 55V, V
GS
= 0V
250
V
DS
= 44V, V
GS
= 0V, T
J
= 150C
Gate-to-Source Forward Leakage
100
V
GS
= 20V
Gate-to-Source Reverse Leakage
-100
nA
V
GS
= -20V
Q
g
Total Gate Charge
146
I
D
= 62A
Q
gs
Gate-to-Source Charge
35
nC
V
DS
= 44V
Q
gd
Gate-to-Drain ("Miller") Charge
54
V
GS
= 10V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time
14
V
DD
= 28V
t
r
Rise Time
101
I
D
= 62A
t
d(off)
Turn-Off Delay Time
50
R
G
= 4.5
t
f
Fall Time
65
V
GS
= 10V, See Fig. 10
Between lead,
6mm (0.25in.)
from package
and center of die contact
C
iss
Input Capacitance
3247
V
GS
= 0V
C
oss
Output Capacitance
781
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
211
pF
= 1.0MHz, See Fig. 5
E
AS
Single Pulse Avalanche Energy
1050
264
mJ
I
AS
= 62A, L = 138
H
nH
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
L
D
Internal Drain Inductance
L
S
Internal Source Inductance
S
D
G
I
GSS
ns
4.5
7.5
I
DSS
Drain-to-Source Leakage Current
This is a typical value at device destruction and represents
operation outside rated limits.
This is a calculated value limited to T
J
= 175C.
IRF3205S/L
www.irf.com
3
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance
Vs. Temperature
1
10
100
1000
0.1
1
10
100
20s PULSE WIDTH
T = 25 C
J
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
1
10
100
1000
0.1
1
10
100
20s PULSE WIDTH
T = 175 C
J
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
-60 -40 -20
0
20 40 60 80 100 120 140 160 180
0.0
0.5
1.0
1.5
2.0
2.5
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
V
=
I =
GS
D
10V
107A
1
10
100
1000
4
6
8
10
12
V = 25V
20s PULSE WIDTH
DS
V , Gate-to-Source Voltage (V)
I , Drain-to-Source Current (A)
GS
D
T = 25 C
J
T = 175 C
J
IRF3205S/L
4
www.irf.com
Fig 7. Typical Source-Drain Diode
Forward Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
Fig 8. Maximum Safe Operating Area
1
10
100
VDS, Drain-to-Source Voltage (V)
0
1000
2000
3000
4000
5000
6000
C, Capacitance(pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
0
20
40
60
80
100
120
0
2
4
6
8
10
12
14
16
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
I =
D
62A
V
= 11V
DS
V
= 27V
DS
V
= 44V
DS
1
10
100
1000
10000
1
10
100
1000
OPERATION IN THIS AREA LIMITED
BY R
DS(on)
Single Pulse
T
T
= 175 C
= 25 C
J
C
V , Drain-to-Source Voltage (V)
I , Drain Current (A)
I , Drain Current (A)
DS
D
10us
100us
1ms
10ms
0.1
1
10
100
1000
0.2
0.8
1.4
2.0
2.6
V ,Source-to-Drain Voltage (V)
I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 25 C
J
T = 175 C
J
IRF3205S/L
www.irf.com
5
R
D
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
V
DS
Pulse Width
1
s
Duty Factor
0.1 %
V
GS
R
G
D.U.T.
10V
+
-
25
50
75
100
125
150
175
0
20
40
60
80
100
120
T , Case Temperature ( C)
I , Drain Current (A)
C
D
LIMITED BY PACKAGE
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
V
DS
Pulse Width
1
s
Duty Factor
0.1 %
V
GS
R
G
D.U.T.
10V
V
DD
0.01
0.1
1
0.00001
0.0001
0.001
0.01
0.1
1
Notes:
1. Duty factor D = t / t
2. Peak T = P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response
(Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)