ChipFind - документация

Электронный компонент: IRF3315S

Скачать:  PDF   ZIP
www.docs.chipfind.ru
background image
IRF3315S/L
PRELIMINARY
HEXFET
Power MOSFET
PD - 9.1617A
Absolute Maximum Ratings
11/7/97
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
1.6
R
JA
Junction-to-Ambient ( PCB Mounted,steady-state)**
40
Thermal Resistance
C/W
Parameter
Max.
Units
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
21
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ 10V
15
A
I
DM
Pulsed Drain Current
84
P
D
@T
A
= 25C
Power Dissipation
3.8
W
P
D
@T
C
= 25C
Power Dissipation
94
W
Linear Derating Factor
0.63
W/C
V
GS
Gate-to-Source Voltage
20
V
E
AS
Single Pulse Avalanche Energy
350
mJ
I
AR
Avalanche Current
12
A
E
AR
Repetitive Avalanche Energy
9.4
mJ
dv/dt
Peak Diode Recovery dv/dt
2.5
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
C
l
Advanced Process Technology
l
Surface Mount (IRF3315S)
l
Low-profile through-hole (IRF3315L)
l
175C Operating Temperature
l
Fast Switching
l
Fully Avalanche Rated
Description
V
DSS
= 150V
R
DS(on)
= 0.082
I
D
= 21A
2
D P ak

T O -26 2
S
D
G
Fifth Generation HEXFETs from International Rectifier
utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This
benefit, combined with the fast switching speed and
ruggedized device design that HEXFET Power MOSFETs
are well known for, provides the designer with an extremely
efficient and reliable device for use in a wide variety of
applications.
The D
2
Pak is a surface mount power package capable of
accommodating die sizes up to HEX-4. It provides the
highest power capability and the lowest possible on-
resistance in any existing surface mount package. The
D
2
Pak is suitable for high current applications because of
its low internal connection resistance and can dissipate
up to 2.0W in a typical surface mount application.
The through-hole version (IRF3315L) is available for low-
profile applications.
background image
IRF3315S/L
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
150
V
V
GS
= 0V, I
D
= 250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
0.187
V/C
Reference to 25C, I
D
= 1mA
R
DS(on)
Static Drain-to-Source On-Resistance
0.082
V
GS
= 10V, I
D
= 12A
V
GS(th)
Gate Threshold Voltage
2.0
4.0
V
V
DS
= V
GS
, I
D
= 250A
g
fs
Forward Transconductance
17
S
V
DS
= 50V, I
D
= 12A
25
A
V
DS
= 150V, V
GS
= 0V
250
V
DS
= 120V, V
GS
= 0V, T
J
= 125C
Gate-to-Source Forward Leakage
100
V
GS
= 20V
Gate-to-Source Reverse Leakage
-100
nA
V
GS
= -20V
Q
g
Total Gate Charge
95
I
D
= 12A
Q
gs
Gate-to-Source Charge
11
nC
V
DS
= 120V
Q
gd
Gate-to-Drain ("Miller") Charge
47
V
GS
= 10V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time
9.6
V
DD
= 75V
t
r
Rise Time
32
I
D
= 12A
t
d(off)
Turn-Off Delay Time
49
R
G
= 5.1
t
f
Fall Time
38
R
D
= 5.9
,
See Fig. 10
Between lead,
and center of die contact
C
iss
Input Capacitance
1300
V
GS
= 0V
C
oss
Output Capacitance
300
pF
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
160
= 1.0MHz, See Fig. 5
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
I
GSS
ns
I
DSS
Drain-to-Source Leakage Current
nH
7.5
L
S
Internal Source Inductance
V
DD
= 25V, starting T
J
= 25C, L = 4.9 mH
R
G
= 25
, I
AS
= 12A. (See Figure 12)
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
Notes:
I
SD
12A, di/dt
140A/s, V
DD
V
(BR)DSS
,
T
J
175C
Pulse width
300s; duty cycle
2%.
Uses IRF3315 data and test conditions
** When mounted on 1" square PCB ( FR-4 or G-10 Material ).
For recommended footprint and soldering techniques refer to application note #AN-994.
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
1.3
V
T
J
= 25C, I
S
= 43A, V
GS
= 0V
t
rr
Reverse Recovery Time
174
260
ns
T
J
= 25C, I
F
= 43A
Q
rr
Reverse Recovery Charge
1.2
1.7
C
di/dt = 100A/s
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Source-Drain Ratings and Characteristics
S
D
G
A
21
84
background image
IRF3315S/L
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
1
10
100
0.1
1
10
100
20s PULSE WIDTH
T = 25 C
J
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
-60 -40 -20
0
20 40 60 80 100 120 140 160 180
0.0
0.5
1.0
1.5
2.0
2.5
3.0
T , Junction Temperature( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
V
=
I =
GS
D
10V
21A
1
10
100
0.1
1
10
100
20s PULSE WIDTH
T = 175 C
J
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
1
10
100
4
5
6
7
8
9
10
V = 50V
20s PULSE WIDTH
DS
V , Gate-to-Source Voltage (V)
I , Drain-to-Source Current (A)
GS
D
T = 25 C
J
T = 175 C
J
background image
IRF3315S/L
1
10
100
0
500
1000
1500
2000
2500
3000
V , Drain-to-Source Voltage (V)
C, Capacitance (pF)
DS
V
C
C
C
=
=
=
=
0V,
C
C
C
f = 1MHz
+ C
+ C
C SHORTED
GS
iss
gs
gd ,
ds
rss
gd
oss
ds
gd
C
iss
C
oss
C
rss
0
20
40
60
80
100
0
4
8
12
16
20
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
FOR TEST CIRCUIT
SEE FIGURE
I =
D
13
12
V
= 30V
DS
V
= 75V
DS
V
= 120V
DS
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
Fig 8. Maximum Safe Operating Area
0.1
1
10
100
0.2
0.5
0.8
1.1
1.4
V ,Source-to-Drain Voltage (V)
I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 25 C
J
T = 175 C
J
1
10
100
1000
1
10
100
1000
OPERATION IN THIS AREA LIMITED
BY R
DS(on)
Single Pulse
T
T
= 175 C
= 25 C
J
C
V , Drain-to-Source Voltage (V)
I , Drain Current (A)
I , Drain Current (A)
DS
D
10us
100us
1ms
10ms
A
background image
IRF3315S/L
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
V
DS
Pulse Width
1
s
Duty Factor
0.1 %
R
D
V
GS
R
G
D.U.T.
10V
+
-
V
DD
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
25
50
75
100
125
150
175
0
5
10
15
20
25
T , Case Temperature ( C)
I , Drain Current (A)
C
D
0.01
0.1
1
10
0.00001
0.0001
0.001
0.01
0.1
1
Notes:
1. Duty factor D = t / t
2. Peak T = P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response
(Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)