ChipFind - документация

Электронный компонент: IRF3710

Скачать:  PDF   ZIP
IRF3710
HEXFET
Power MOSFET
01/17/02
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
0.75
R
CS
Case-to-Sink, Flat, Greased Surface
0.50
C/W
R
JA
Junction-to-Ambient
62
Thermal Resistance
www.irf.com
1
V
DSS
= 100V
R
DS(on)
= 23m
I
D
= 57A
S
D
G
TO-220AB
Advanced HEXFET
Power MOSFETs from International Rectifier utilize
advanced processing techniques to achieve extremely low on-resistance
per silicon area. This benefit, combined with the fast switching speed and
ruggedized device design that HEXFET power MOSFETs are well known
for, provides the designer with an extremely efficient and reliable device for
use in a wide variety of applications.
The TO-220 package is universally preferred for all commercial-industrial
applications at power dissipation levels to approximately 50 watts. The low
thermal resistance and low package cost of the TO-220 contribute to its wide
acceptance throughout the industry.
l
Advanced Process Technology
l
Ultra Low On-Resistance
l
Dynamic dv/dt Rating
l
175C Operating Temperature
l
Fast Switching
l
Fully Avalanche Rated
Description
Absolute Maximum Ratings
Parameter
Max.
Units
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
57
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ 10V
40
A
I
DM
Pulsed Drain Current
230
P
D
@T
C
= 25C
Power Dissipation
200
W
Linear Derating Factor
1.3
W/C
V
GS
Gate-to-Source Voltage
20
V
I
AR
Avalanche Current
28
A
E
AR
Repetitive Avalanche Energy
20
mJ
dv/dt
Peak Diode Recovery dv/dt
5.8
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
C
Mounting torque, 6-32 or M3 srew
10 lbfin (1.1Nm)
PD - 91309A
IRF3710
2
www.irf.com
S
D
G
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
1.2
V
T
J
= 25C, I
S
= 28A, V
GS
= 0V
t
rr
Reverse Recovery Time
140
220
ns
T
J
= 25C, I
F
= 28A
Q
rr
Reverse Recovery Charge
670 1010
nC
di/dt = 100A/s
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Source-Drain Ratings and Characteristics
57
230
A
Starting T
J
= 25C, L = 0.70mH
R
G
= 25
, I
AS
= 28A, V
GS
=10V (See Figure 12)
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11)
Notes:
I
SD
28A, di/dt
380A/s, V
DD
V
(BR)DSS
,
T
J
175C
Pulse width
400s; duty cycle
2%.
This is a typical value at device destruction and represents
operation outside rated limits.
This is a calculated value limited to T
J
= 175C .
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
100
V
V
GS
= 0V, I
D
= 250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
0.13
V/C
Reference to 25C, I
D
= 1mA
R
DS(on)
Static Drain-to-Source On-Resistance
23
m
V
GS
= 10V, I
D
=28A
V
GS(th)
Gate Threshold Voltage
2.0
4.0
V
V
DS
= V
GS
, I
D
= 250A
g
fs
Forward Transconductance
32
S
V
DS
= 25V, I
D
= 28A
25
A
V
DS
= 100V, V
GS
= 0V
250
V
DS
= 80V, V
GS
= 0V, T
J
= 150C
Gate-to-Source Forward Leakage
100
V
GS
= 20V
Gate-to-Source Reverse Leakage
-100
nA
V
GS
= -20V
Q
g
Total Gate Charge
130
I
D
= 28A
Q
gs
Gate-to-Source Charge
26
nC
V
DS
= 80V
Q
gd
Gate-to-Drain ("Miller") Charge
43
V
GS
= 10V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time
12
V
DD
= 50V
t
r
Rise Time
58
I
D
= 28A
t
d(off)
Turn-Off Delay Time
45
R
G
= 2.5
t
f
Fall Time
47
V
GS
= 10V, See Fig. 10
Between lead,
6mm (0.25in.)
from package
and center of die contact
C
iss
Input Capacitance
3130
V
GS
= 0V
C
oss
Output Capacitance
410
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
72
pF
= 1.0MHz, See Fig. 5
E
AS
Single Pulse Avalanche Energy
1060
280
mJ
I
AS
= 28A, L = 0.70mH
nH
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
L
D
Internal Drain Inductance
L
S
Internal Source Inductance
S
D
G
I
GSS
ns
4.5
7.5
I
DSS
Drain-to-Source Leakage Current
IRF3710
www.irf.com
3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
I D
, Drain-to-Source Current (A)
3.5V
20s PULSE WIDTH
Tj = 25C
VGS
TOP 16V
10V
7.0V
6.0V
5.0V
4.5V
4.0V
BOTTOM 3.5V
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
I D
, Drain-to-Source Current (A)
3.5V
20s PULSE WIDTH
Tj = 175C
VGS
TOP 16V
10V
7.0V
6.0V
5.0V
4.5V
4.0V
BOTTOM 3.5V
3.0
4.0
5.0
6.0
7.0
8.0
9.0
VGS, Gate-to-Source Voltage (V)
0.10
1.00
10.00
100.00
1000.00
I D
, Drain-to-Source Current
(
)
TJ = 25C
TJ = 175C
VDS = 15V
20s PULSE WIDTH
-60
-40
-20
0
20
40
60
80
100
120
140
160
180
0.0
0.5
1.0
1.5
2.0
2.5
3.0
T , Junction Temperature
( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
V
=
I
=
GS
D
10V
57A
IRF3710
4
www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
1
10
100
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
100000
C, Capacitance(pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
0
20
40
60
80
100
0
2
5
7
10
12
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
I
=
D
28A
V
= 20V
DS
V
= 50V
DS
V
= 80V
DS
0.0
0.5
1.0
1.5
2.0
VSD, Source-toDrain Voltage (V)
0.10
1.00
10.00
100.00
1000.00
I SD
, Reverse Drain Current (A)
TJ = 25C
TJ = 175C
VGS = 0V
1
10
100
1000
VDS , Drain-toSource Voltage (V)
0.1
1
10
100
1000
I D
, Drain-to-Source Current (A)
Tc = 25C
Tj = 175C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100sec
IRF3710
www.irf.com
5
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
V
DS
Pulse Width
1
s
Duty Factor
0.1 %
R
D
V
GS
R
G
D.U.T.
V
GS
+
-
V
DD
Fig 10a. Switching Time Test Circuit
Fig 10b. Switching Time Waveforms
25
50
75
100
125
150
175
0
10
20
30
40
50
60
T , Case Temperature
( C)
I , Drain Current (A)
C
D
0.01
0.1
1
0.00001
0.0001
0.001
0.01
0.1
1
Notes:
1. Duty factor D =
t / t
2. Peak T
= P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response
(Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
IRF3710
6
www.irf.com
Q
G
Q
GS
Q
GD
V
G
Charge
D.U.T.
V
DS
I
D
I
G
3mA
V
GS
.3
F
50K
.2
F
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
V
GS
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(B R )D SS
I
A S
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
R G
IA S
0 .0 1
tp
D .U .T
L
V D S
+
-
VD D
D R IV E R
A
1 5V
2 0 V
V
GS
25
50
75
100
125
150
175
0
110
220
330
440
550
Starting T , Junction Temperature
( C)
E , Single Pulse Avalanche Energy (mJ)
J
AS
I D
TOP
BOTTOM
11A
20A
28A
IRF3710
www.irf.com
7
Peak Diode Recovery dv/dt Test Circuit
P.W.
Period
di/dt
Diode Recovery
dv/dt
Ripple
5%
Body Diode
Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D =
P.W.
Period
+
-
+
+
+
-
-
-
R
G
V
DD
dv/dt controlled by R
G
I
SD
controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
*
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
*
Reverse Polarity of D.U.T for P-Channel
V
GS
[ ]
[ ]
***
V
GS
= 5.0V for Logic Level and 3V Drive Devices
[ ] ***
Fig 14. For N-channel
HEXFET
power MOSFETs
IRF3710
8
www.irf.com
L E A D A S S IG NM E NT S
1 - G A T E
2 - D R A IN
3 - S O U RC E
4 - D R A IN
- B -
1 .32 (.05 2)
1 .22 (.04 8)
3 X
0.55 (.02 2)
0.46 (.01 8)
2 .92 (.11 5)
2 .64 (.10 4)
4.69 ( .18 5 )
4.20 ( .16 5 )
3X
0.93 (.03 7)
0.69 (.02 7)
4.06 (.16 0)
3.55 (.14 0)
1.15 (.04 5)
M IN
6.47 (.25 5)
6.10 (.24 0)
3 .7 8 (.149 )
3 .5 4 (.139 )
- A -
10 .54 (.4 15)
10 .29 (.4 05)
2.87 (.11 3)
2.62 (.10 3)
1 5.24 (.60 0)
1 4.84 (.58 4)
1 4.09 (.55 5)
1 3.47 (.53 0)
3 X
1 .4 0 (.0 55 )
1 .1 5 (.0 45 )
2.54 (.10 0)
2 X
0 .3 6 (.01 4) M B A M
4
1 2 3
N O TE S :
1 D IM E N S IO N IN G & TO L E R A N C ING P E R A N S I Y 1 4.5M , 1 9 82. 3 O U T LIN E C O N F O R M S TO JE D E C O U T LIN E TO -2 20 A B .
2 C O N TR O L LIN G D IM E N S IO N : IN C H 4 H E A TS IN K & LE A D M E A S U R E M E N T S D O N O T IN C LU DE B U R R S .
Part Marking Information
TO-220AB
Package Outline
TO-220AB
Dimensions are shown in millimeters (inches)
Data and specifications subject to change without notice.
This product has been designed and qualified for the Automotive [Q101] market.
Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.01/02
LOT CODE 1789
ASSEMBLED ON WW 19, 1997
IN THE ASSEMBLY LINE "C"
INTERNATIONAL
RECTIFIER
LOGO
ASSEMBLY
LOT CODE
PART NUMBER
DATE CODE
YEAR 7 = 1997
WEEK 19
LINE C
EXAMPLE:
THIS IS AN IRF1010