ChipFind - документация

Электронный компонент: IRF520V

Скачать:  PDF   ZIP
www.docs.chipfind.ru
background image
IRF520V
HEXFET
Power MOSFET
3/30/01
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
3.4
R
CS
Case-to-Sink, Flat, Greased Surface
0.50
C/W
R
JA
Junction-to-Ambient
62
Thermal Resistance
www.irf.com
1
V
DSS
= 100V
R
DS(on)
= 0.165
I
D
= 9.6A
S
D
G
TO-220AB
Advanced HEXFET
Power MOSFETs from International
Rectifier utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This benefit,
combined with the fast switching speed and ruggedized
device design that HEXFET power MOSFETs are well
known for, provides the designer with an extremely efficient
and reliable device for use in a wide variety of applications.
The TO-220 package is universally preferred for all
commercial-industrial applications at power dissipation
levels to approximately 50 watts. The low thermal
resistance and low package cost of the TO-220 contribute
to its wide acceptance throughout the industry.
l
Advanced Process Technology
l
Ultra Low On-Resistance
l
Dynamic dv/dt Rating
l
175C Operating Temperature
l
Fast Switching
l
Fully Avalanche Rated
l
Optimized for SMPS Applications
Description
PD - 94092
Absolute Maximum Ratings
Parameter
Max.
Units
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
9.6
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ 10V
6.8
A
I
DM
Pulsed Drain Current
37
P
D
@T
C
= 25C
Power Dissipation
44
W
Linear Derating Factor
0.29
W/C
V
GS
Gate-to-Source Voltage
20
V
I
AR
Avalanche Current
9.2
A
E
AR
Repetitive Avalanche Energy
4.4
mJ
dv/dt
Peak Diode Recovery dv/dt
7.0
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
C
Mounting torque, 6-32 or M3 srew
10 lbfin (1.1Nm)
background image
IRF520V
2
www.irf.com
S
D
G
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
1.2
V
T
J
= 25C, I
S
= 9.2A, V
GS
= 0V
t
rr
Reverse Recovery Time
83
120
ns
T
J
= 25C, I
F
= 9.2A
Q
rr
Reverse Recovery Charge
220
330
nC
di/dt = 100A/s
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Source-Drain Ratings and Characteristics
9.6
37
A
Starting T
J
= 25C, L = 1.0mH
R
G
= 25
, I
AS
= 9.2A, V
GS
=10V (See Figure 12)
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
Notes:
I
SD
9.2A, di/dt
360A/s, V
DD
V
(BR)DSS
,
T
J
175C
Pulse width
400s; duty cycle
2%.
This is a typical value at device destruction and represents
operation outside rated limits.
This is a calculated value limited to T
J
= 175C .
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
100
V
V
GS
= 0V, I
D
= 250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
0.12
V/C
Reference to 25C, I
D
= 1mA
R
DS(on)
Static Drain-to-Source On-Resistance
0.165
V
GS
= 10V, I
D
= 5.5A
V
GS(th)
Gate Threshold Voltage
2.0
4.0
V
V
DS
= V
GS
, I
D
= 250A
g
fs
Forward Transconductance
1.9
S
V
DS
= 50V, I
D
= 5.5A
25
A
V
DS
= 100V, V
GS
= 0V
250
V
DS
= 80V, V
GS
= 0V, T
J
= 150C
Gate-to-Source Forward Leakage
100
V
GS
= 20V
Gate-to-Source Reverse Leakage
-100
nA
V
GS
= -20V
Q
g
Total Gate Charge
22
I
D
= 9.2A
Q
gs
Gate-to-Source Charge
5.2
nC
V
DS
= 80V
Q
gd
Gate-to-Drain ("Miller") Charge
7.0
V
GS
= 10V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time
6.9
V
DD
= 50V
t
r
Rise Time
23
I
D
= 9.2A
t
d(off)
Turn-Off Delay Time
30
R
G
= 18
t
f
Fall Time
24
V
GS
= 10V, See Fig. 10
Between lead,
6mm (0.25in.)
from package
and center of die contact
C
iss
Input Capacitance
560
V
GS
= 0V
C
oss
Output Capacitance
81
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
10
pF
= 1.0MHz, See Fig. 5
E
AS
Single Pulse Avalanche Energy
150
44
mJ
I
AS
= 9.2A, L = 1.0mH
nH
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
L
D
Internal Drain Inductance
L
S
Internal Source Inductance
S
D
G
I
GSS
ns
4.5
7.5
I
DSS
Drain-to-Source Leakage Current
background image
IRF520V
www.irf.com
3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
1
10
100
0.1
1
10
100
20s PULSE WIDTH
T = 25 C
J
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
1
10
100
1
10
100
20s PULSE WIDTH
T = 175 C
J
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
1
10
100
4.0
5.0
6.0
7.0
8.0
9.0
V = 50V
20s PULSE WIDTH
DS
V , Gate-to-Source Voltage (V)
I , Drain-to-Source Current (A)
GS
D
T = 25 C
J
T = 175 C
J
-60 -40 -20
0
20 40 60 80 100 120 140 160 180
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
V
=
I =
GS
D
10V
9.2A
background image
IRF520V
4
www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
0
4
8
12
16
20
24
0
4
8
12
16
20
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
FOR TEST CIRCUIT
SEE FIGURE
I =
D
13
9.2A
V
= 20V
DS
V
= 50V
DS
V
= 80V
DS
0.1
1
10
100
0.4
0.6
0.8
1.0
1.2
1.4
1.6
V ,Source-to-Drain Voltage (V)
I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 25 C
J
T = 175 C
J
1
10
100
1000
VDS , Drain-toSource Voltage (V)
0.1
1
10
100
I D
, Drain-to-Source Current (A)
Tc = 25C
Tj = 175C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100sec
1
10
100
VDS, Drain-to-Source Voltage (V)
0
200
400
600
800
1000
C, Capacitance(pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
background image
IRF520V
www.irf.com
5
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
0.01
0.1
1
10
0.00001
0.0001
0.001
0.01
0.1
Notes:
1. Duty factor D =
t / t
2. Peak T = P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response
(Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
V
DS
Pulse Width
1
s
Duty Factor
0.1 %
R
D
V
GS
R
G
D.U.T.
V
GS
+
-
V
DD
Fig 10a. Switching Time Test Circuit
Fig 10b. Switching Time Waveforms
25
50
75
100
125
150
175
0.0
2.0
4.0
6.0
8.0
10.0
T , Case Temperature
( C)
I , Drain Current (A)
C
D