ChipFind - документация

Электронный компонент: IRF6628TRPBF

Скачать:  PDF   ZIP
Control Fet
background image
www.irf.com
1
07/11/06
IRF6628PbF
IRF6628TRPbF
DirectFET
Power MOSFET
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
Fig 1. Typical On-Resistance vs. Gate Voltage
Typical values (unless otherwise specified)
Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage
Click on this section to link to the appropriate technical paper.
Click on this section to link to the DirectFET Website.
Surface mounted on 1 in. square Cu board, steady state.
T
C
measured with thermocouple mounted to top (Drain) of part.
Repetitive rating; pulse width limited by max. junction temperature.
Starting T
J
= 25C, L = 0.16mH, R
G
= 25
, I
AS
= 22A.
Notes:
DirectFET
ISOMETRIC
PD - 97234
SQ
SX
ST
MQ
MX
MT
MP
0
10
20
30
40
QG Total Gate Charge (nC)
0.0
1.0
2.0
3.0
4.0
5.0
6.0
V
G
S
,

G
a
t
e
-
t
o
-
S
o
u
r
c
e

V
o
l
t
a
g
e

(
V
)
VDS= 20V
VDS= 13V
VDS= 5.0V
ID= 22A
MX
V
DSS
V
GS
R
DS(on)
R
DS(on)
25V max 20V max 1.9m
@ 10V 2.5m@ 4.5V
Q
g tot
Q
gd
Q
gs2
Q
rr
Q
oss
V
gs(th)
31nC
12nC
4.1nC
26nC
21nC
1.9V
Absolute Maximum Ratings
Parameter
Units
V
DS
Drain-to-Source Voltage
V
V
GS
Gate-to-Source Voltage
I
D
@ T
A
= 25C
Continuous Drain Current, V
GS
@ 10V
e
I
D
@ T
A
= 70C
Continuous Drain Current, V
GS
@ 10V
e
A
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
f
I
DM
Pulsed Drain Current
g
E
AS
Single Pulse Avalanche Energy
h
mJ
I
AR
Avalanche Current
g
A
22
Max.
22
160
220
20
25
27
38
l
RoHs Compliant
l
Lead-Free (Qualified up to 260C Reflow)
l
Application Specific MOSFETs
l
Ideal for CPU Core DC-DC Converters
l
Low Conduction Losses
l
High Cdv/dt Immunity
l
Low Profile (<0.7mm)
l
Dual Sided Cooling Compatible
l
Compatible with existing Surface Mount Techniques
3
4
5
6
7
8
9
10
11
VGS, Gate -to -Source Voltage (V)
0
2
4
6
8
10
T
y
p
i
c
a
l

R
D
S
(
o
n
)
(
m
)
ID = 27A
TJ = 25C
TJ = 125C
Description
The IRF6628PbF combines the latest HEXFET Power MOSFET Silicon technology with the advanced DirectFET
TM
packaging to achieve
the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.6 mm profile. The DirectFET package is compatible
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering
techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows
dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6628PbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and
switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of
processors operating at higher frequencies. The IRF6628PbF has been optimized for parameters that are critical in synchronous buck
including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6628PbF offers particularly low Rds(on) and high Cdv/dt
immunity for synchronous FET applications.
background image
IRF6628PbF
2
www.irf.com
Repetitive rating; pulse width limited by max. junction temperature.
Pulse width
400s; duty cycle 2%.
Notes:
Static @ T
J
= 25C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
BV
DSS
Drain-to-Source Breakdown Voltage
25
V
V
DSS
/
T
J
Breakdown Voltage Temp. Coefficient
16
mV/C
R
DS(on)
Static Drain-to-Source On-Resistance
1.9
2.5
m
2.5
3.3
V
GS(th)
Gate Threshold Voltage
1.35
1.9
2.35
V
V
GS(th)
/
T
J
Gate Threshold Voltage Coefficient
-6.0
mV/C
I
DSS
Drain-to-Source Leakage Current
1.0
A
150
I
GSS
Gate-to-Source Forward Leakage
100
nA
Gate-to-Source Reverse Leakage
-100
gfs
Forward Transconductance
100
S
Q
g
Total Gate Charge
31
47
Q
gs1
Pre-Vth Gate-to-Source Charge
7.5
Q
gs2
Post-Vth Gate-to-Source Charge
4.1
nC
Q
gd
Gate-to-Drain Charge
12
Q
godr
Gate Charge Overdrive
7.4
See Fig. 15
Q
sw
Switch Charge (Q
gs2
+ Q
gd
)
16
Q
oss
Output Charge
21
nC
R
G
Gate Resistance
1.2
2.2
t
d(on)
Turn-On Delay Time
20
t
r
Rise Time
83
ns
t
d(off)
Turn-Off Delay Time
17
t
f
Fall Time
6.7
C
iss
Input Capacitance
3770
C
oss
Output Capacitance
970
pF
C
rss
Reverse Transfer Capacitance
500
Diode Characteristics
Parameter
Min. Typ. Max. Units
I
S
Continuous Source Current
3.5
(Body Diode)
A
I
SM
Pulsed Source Current
220
(Body Diode)
g
V
SD
Diode Forward Voltage
1.0
V
t
rr
Reverse Recovery Time
21
32
ns
Q
rr
Reverse Recovery Charge
26
39
nC
MOSFET symbol
Clamped Inductive Load
V
DS
= 13V, I
D
= 22A
Conditions
See Fig. 17
= 1.0MHz
V
DS
= 16V, V
GS
= 0V
V
GS
= 20V
V
GS
= -20V
V
DS
= 20V, V
GS
= 0V
V
DS
= 13V
V
DS
= 20V, V
GS
= 0V, T
J
= 125C
Conditions
V
GS
= 0V, I
D
= 250A
Reference to 25C, I
D
= 1mA
V
GS
= 10V, I
D
= 27A
i
V
GS
= 4.5V, I
D
= 22A
i
V
DS
= V
GS
, I
D
= 100A
T
J
= 25C, I
F
= 22A
V
GS
= 4.5V
I
D
= 22A
V
GS
= 0V
V
DS
= 15V
I
D
= 22A
V
DD
= 13V, V
GS
= 4.5V
i
di/dt = 250A/s
i See Fig. 18
T
J
= 25C, I
S
= 22A, V
GS
= 0V
i
showing the
integral reverse
p-n junction diode.
background image
IRF6628PbF
www.irf.com
3
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
1000
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
100
T
h
e
r
m
a
l

R
e
s
p
o
n
s
e

(

Z

t
h
J
A
)
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
Ri (C/W)
i (sec)
1.2801 0.000322
8.7256 0.164798
21.75 2.2576
13.2511 69
J
J
1
1
2
2
3
3
R
1
R
1
R
2
R
2
R
3
R
3
Ci=
i/Ri
Ci=
i/Ri
A
A
4
4
R
4
R
4
Used double sided cooling , mounting pad.
Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
Notes:
R
is measured at
T
J
of approximately 90C.
Surface mounted on 1 in. square Cu
(still air).
Mounted to a PCB with
small clip heatsink (still air)
Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
Absolute Maximum Ratings
Parameter
Units
P
D
@T
A
= 25C
Power Dissipation
e
W
P
D
@T
A
= 70C
Power Dissipation
e
P
D
@T
C
= 25C
Power Dissipation
f
T
P
Peak Soldering Temperature
C
T
J
Operating Junction and
T
STG
Storage Temperature Range
Thermal Resistance
Parameter
Typ.
Max.
Units
R
JA
Junction-to-Ambient
em
45
R
JA
Junction-to-Ambient
km
12.5
R
JA
Junction-to-Ambient
lm
20
C/W
R
JC
Junction-to-Case
fm
1.3
R
J-PCB
Junction-to-PCB Mounted
1.0
Linear Derating Factor
e
W/C
0.022
270
-40 to + 150
Max.
96
2.8
1.8
background image
IRF6628PbF
4
www.irf.com
Fig 5. Typical Output Characteristics
Fig 4. Typical Output Characteristics
Fig 6. Typical Transfer Characteristics
Fig 7. Normalized On-Resistance vs. Temperature
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
Fig 9. Typical On-Resistance vs.
Drain Current and Gate Voltage
0.1
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
I D
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
VGS
TOP 10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
BOTTOM
2.5V
60s PULSE WIDTH
Tj = 25C
2.5V
0.1
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
I D
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
2.5V
60s PULSE WIDTH
Tj = 150C
VGS
TOP 10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
BOTTOM
2.5V
-60 -40 -20 0 20 40 60 80 100 120 140 160
TJ , Junction Temperature (C)
0.5
1.0
1.5
2.0
T
y
p
i
c
a
l

R
D
S
(
o
n
)
(
N
o
r
m
a
l
i
z
e
d
)
ID = 27A
VGS = 4.5V
VGS = 10V
1
10
100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
100000
C
,

C
a
p
a
c
i
t
a
n
c
e
(
p
F
)
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
1
2
3
4
5
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
I D
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
TJ = 150C
TJ = 25C
TJ = -40C
VDS = 15V
60s PULSE WIDTH
0
50
100
150
200
250
ID, Drain Current (A)
0
2
4
6
8
10
12
14
16
18
20
T
y
p
i
c
a
l

R
D
S
(
o
n
)

(
m
)
Vgs = 3.5V
Vgs = 4.0V
Vgs = 4.5V
Vgs = 5.0V
Vgs = 10V
TJ = 25C
background image
IRF6628PbF
www.irf.com
5
Fig 13. Typical Threshold Voltage vs. Junction
Temperature
Fig 12. Maximum Drain Current vs. Case Temperature
Fig 10. Typical Source-Drain Diode Forward Voltage
Fig11. Maximum Safe Operating Area
Fig 14. Maximum Avalanche Energy vs. Drain Current
0.4
0.6
0.8
1.0
1.2
VSD, Source-to-Drain Voltage (V)
0
1
10
100
1000
I S
D
,

R
e
v
e
r
s
e

D
r
a
i
n

C
u
r
r
e
n
t

(
A
)
TJ = 150C
TJ = 25C
TJ = -40C
VGS = 0V
-75 -50 -25
0
25
50
75 100 125 150
TJ , Temperature ( C )
0.5
1.0
1.5
2.0
2.5
3.0
T
y
p
i
c
a
l

V G
S
(
t
h
)
G
a
t
e

t
h
r
e
s
h
o
l
d

V
o
l
t
a
g
e

(
V
)
ID = 100A
ID = 250A
ID = 1mA
ID = 1.0A
25
50
75
100
125
150
Starting TJ , Junction Temperature (C)
0
20
40
60
80
100
120
140
160
E
A
S
,
S
i
n
g
l
e

P
u
l
s
e

A
v
a
l
a
n
c
h
e

E
n
e
r
g
y

(
m
J
)
ID
TOP 7.0A
8.1A
BOTTOM 22A
25
50
75
100
125
150
TC , Case Temperature (C)
0
20
40
60
80
100
120
140
160
I D
,
D
r
a
i
n

C
u
r
r
e
n
t

(
A
)
0.01
0.10
1.00
10.00
100.00
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
1000
I D
,


D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
TA = 25C
TJ = 150C
Single Pulse
100sec
1msec
10msec