ChipFind - документация

Электронный компонент: IRF6631

Скачать:  PDF   ZIP
www.docs.chipfind.ru
background image
www.irf.com
1
02/09/06
IRF6631
DirectFET
Power MOSFET
Description
The IRF6631 combines the latest HEXFET Power MOSFET Silicon technology with the advanced DirectFET
TM
packaging to achieve the
lowest on-state resistance in a package that has the footprint of a MICRO-8 and only 0.6 mm profile. The DirectFET package is compatible
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering
techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows
dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6631 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching
losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors
operating at higher frequencies. The IRF6631 has been optimized for parameters that are critical in synchronous buck including Rds(on) and
gate charge to minimize losses in the control FET socket.
PD - 97183
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
Fig 1. Typical On-Resistance vs. Gate Voltage
Typical values (unless otherwise specified)
Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage
Click on this section to link to the appropriate technical paper.
Click on this section to link to the DirectFET Website.
Surface mounted on 1 in. square Cu board, steady state.
T
C
measured with thermocouple mounted to top (Drain) of part.
Repetitive rating; pulse width limited by max. junction temperature.
Starting T
J
= 25C, L = 0.24mH, R
G
= 25
, I
AS
= 10A.
Notes:
SQ
SX
ST
MQ
MX
MT
MP
DirectFET
ISOMETRIC
SQ
3
4
5
6
7
8
9
10
VGS, Gate -to -Source Voltage (V)
0
5
10
15
20
T
y
p
i
c
a
l

R
D
S
(
o
n
)
(
m
)
ID = 13A
TJ = 25C
TJ = 125C
V
DSS
V
GS
R
DS(on)
R
DS(on)
30V max 20V max 6.0m
@ 10V 8.3m@ 4.5V
Absolute Maximum Ratings
Parameter
Units
V
DS
Drain-to-Source Voltage
V
V
GS
Gate-to-Source Voltage
I
D
@ T
A
= 25C
Continuous Drain Current, V
GS
@ 10V
e
I
D
@ T
A
= 70C
Continuous Drain Current, V
GS
@ 10V
e
A
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
f
I
DM
Pulsed Drain Current
g
E
AS
Single Pulse Avalanche Energy
h
mJ
I
AR
Avalanche Current
g
A
10
Max.
10
57
100
20
30
13
13
0
5
10
15
20
25
30
QG Total Gate Charge (nC)
0.0
2.0
4.0
6.0
8.0
10.0
12.0
V
G
S
,

G
a
t
e
-
t
o
-
S
o
u
r
c
e

V
o
l
t
a
g
e

(
V
)
VDS= 24V
VDS= 15V
ID= 10A
Q
g tot
Q
gd
Q
gs2
Q
rr
Q
oss
V
gs(th)
12nC
4.4nC
1.1nC
10nC
7.3nC
1.8V
l
RoHS compliant containing no lead or bromide
l
Low Profile (<0.6 mm)
l
Dual Sided Cooling Compatible
l
Ultra Low Package Inductance
l
Optimized for High Frequency Switching
l
Ideal for CPU Core DC-DC Converters
l
Optimized for Control FET applications
l
Low Conduction and Switching Losses
l
Compatible with existing Surface Mount Techniques
background image
IRF6631
2
www.irf.com
Pulse width
400s; duty cycle 2%.
Repetitive rating; pulse width limited by max. junction temperature.
Notes:
Static @ T
J
= 25C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
BV
DSS
Drain-to-Source Breakdown Voltage
30
V
V
DSS
/
T
J
Breakdown Voltage Temp. Coefficient
23
mV/C
R
DS(on)
Static Drain-to-Source On-Resistance
6.0
7.8
m
8.3
10.8
V
GS(th)
Gate Threshold Voltage
1.35
1.8
2.35
V
V
GS(th)
/
T
J
Gate Threshold Voltage Coefficient
-5.2
mV/C
I
DSS
Drain-to-Source Leakage Current
1.0
A
150
I
GSS
Gate-to-Source Forward Leakage
100
nA
Gate-to-Source Reverse Leakage
-100
gfs
Forward Transconductance
32
S
Q
g
Total Gate Charge
12
18
Q
gs1
Pre-Vth Gate-to-Source Charge
3.4
Q
gs2
Post-Vth Gate-to-Source Charge
1.1
nC
Q
gd
Gate-to-Drain Charge
4.4
Q
godr
Gate Charge Overdrive
3.1
See Fig. 15
Q
sw
Switch Charge (Q
gs2
+ Q
gd
)
5.5
Q
oss
Output Charge
7.3
nC
R
G
Gate Resistance
1.6
3.0
t
d(on)
Turn-On Delay Time
15
t
r
Rise Time
18
t
d(off)
Turn-Off Delay Time
18
ns
t
f
Fall Time
4.9
C
iss
Input Capacitance
1450
C
oss
Output Capacitance
310
pF
C
rss
Reverse Transfer Capacitance
170
Diode Characteristics
Parameter
Min. Typ. Max. Units
I
S
Continuous Source Current
42
(Body Diode)
A
I
SM
Pulsed Source Current
100
(Body Diode)
d
V
SD
Diode Forward Voltage
1.2
V
t
rr
Reverse Recovery Time
11
17
ns
Q
rr
Reverse Recovery Charge
10
15
nC
MOSFET symbol
Clamped Inductive Load
V
DS
= 15V, I
D
= 10A
Conditions
See Fig. 16 & 17
= 1.0MHz
V
DS
= 16V, V
GS
= 0V
V
GS
= 20V
V
GS
= -20V
V
DS
= 24V, V
GS
= 0V
V
DS
= 15V
V
DS
= 24V, V
GS
= 0V, T
J
= 125C
Conditions
V
GS
= 0V, I
D
= 250A
Reference to 25C, I
D
= 1mA
V
GS
= 10V, I
D
= 13A
c
V
GS
= 4.5V, I
D
= 10A
c
V
DS
= V
GS
, I
D
= 25A
T
J
= 25C, I
F
= 10A
V
GS
= 4.5V
I
D
= 10A
V
GS
= 0V
V
DS
= 15V
I
D
= 10A
V
DD
= 16V, V
GS
= 4.5V
c
di/dt = 500A/s
c See Fig. 18
T
J
= 25C, I
S
= 10A, V
GS
= 0V
c
showing the
integral reverse
p-n junction diode.
background image
IRF6631
www.irf.com
3
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
Surface mounted on 1 in. square Cu board, steady state.
Used double sided cooling , mounting pad.
Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
Notes:
T
C
measured with thermocouple incontact with top (Drain) of part.
R
is measured at
T
J
of approximately 90C.
Surface mounted on 1 in. square Cu
board (still air).
Mounted to a PCB with
small clip heatsink (still air)
Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
100
T
h
e
r
m
a
l

R
e
s
p
o
n
s
e

(

Z

t
h
J
A
)
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
Ri (C/W)
i (sec)
1.6195 0.000126
2.14056 0.001354
22.2887 0.375850
20.0457 7.41
11.9144 99
J
J
1
1
2
2
3
3
R
1
R
1
R
2
R
2
R
3
R
3
Ci=
i/Ri
Ci=
i/Ri
4
4
R
4
R
4
A
A
5
5
R
5
R
5
Absolute Maximum Ratings
Parameter
Units
P
D
@T
A
= 25C
Power Dissipation
W
P
D
@T
A
= 70C
Power Dissipation
P
D
@T
C
= 25C
Power Dissipation
f
T
P
Peak Soldering Temperature
C
T
J
Operating Junction and
T
STG
Storage Temperature Range
Thermal Resistance
Parameter
Typ.
Max.
Units
R
JA
Junction-to-Ambient
g
58
R
JA
Junction-to-Ambient
dg
12.5
R
JA
Junction-to-Ambient
eg
20
C/W
R
JC
Junction-to-Case
fg
3.0
R
J-PCB
Junction-to-PCB Mounted
1.4
Linear Derating Factor
W/C
0.017
270
-40 to + 150
Max.
42
2.2
1.4
background image
IRF6631
4
www.irf.com
Fig 5. Typical Output Characteristics
Fig 4. Typical Output Characteristics
Fig 6. Typical Transfer Characteristics
Fig 7. Normalized On-Resistance vs. Temperature
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
Fig 9. Typical On-Resistance Vs.
Drain Current and Gate Voltage
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
I D
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
2.5V
60s PULSE WIDTH
Tj = 150C
VGS
TOP 10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
BOTTOM
2.5V
1
10
100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
C
,

C
a
p
a
c
i
t
a
n
c
e
(
p
F
)
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0
20
40
60
80
100
120
ID, Drain Current (A)
0
10
20
30
40
50
T
y
p
i
c
a
l

R
D
S
(
o
n
)

(
m
)
TJ = 25C
Vgs = 3.5V
Vgs = 4.0V
Vgs = 4.5V
Vgs = 5.0V
Vgs = 10V
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
1000
I D
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
VGS
TOP 10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
BOTTOM
2.5V
60s PULSE WIDTH
Tj = 25C
2.5V
1
2
3
4
5
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
I D
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
TJ = 150C
TJ = 25C
TJ = -40C
VDS = 10V
60s PULSE WIDTH
-60 -40 -20 0 20 40 60 80 100 120 140 160
TJ , Junction Temperature (C)
0.5
1.0
1.5
2.0
T
y
p
i
c
a
l

R
D
S
(
o
n
)
(
N
o
r
m
a
l
i
z
e
d
)
ID = 13A
VGS = 10V
VGS = 4.5V
background image
IRF6631
www.irf.com
5
Fig 13. Typical Threshold Voltage vs. Junction
Temperature
Fig 12. Maximum Drain Current vs. Case Temperature
Fig 10. Typical Source-Drain Diode Forward Voltage
Fig 11. Maximum Safe Operating Area
Fig 14. Maximum Avalanche Energy vs. Drain Current
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
VSD, Source-to-Drain Voltage (V)
0
1
10
100
1000
I S
D
,

R
e
v
e
r
s
e

D
r
a
i
n

C
u
r
r
e
n
t

(
A
)
TJ = 150C
TJ = 25C
TJ = -40C
VGS = 0V
25
50
75
100
125
150
TC , Case Temperature (C)
0
10
20
30
40
50
60
I D
,
D
r
a
i
n

C
u
r
r
e
n
t

(
A
)
-75 -50 -25
0
25
50
75 100 125 150
TJ , Temperature ( C )
1.0
1.5
2.0
2.5
T
y
p
i
c
a
l

V G
S
(
t
h
)
G
a
t
e

t
h
r
e
s
h
o
l
d

V
o
l
t
a
g
e

(
V
)
ID = 50A
0.0
0.1
1.0
10
100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
I D
,


D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
OPERATION IN THIS AREA
LIMITED BY RDS(on)
TA = 25C
TJ = 150C
Single Pulse
10msec
100sec
1msec
25
50
75
100
125
150
Starting TJ , Junction Temperature (C)
0
10
20
30
40
50
60
E
A
S
,
S
i
n
g
l
e

P
u
l
s
e

A
v
a
l
a
n
c
h
e

E
n
e
r
g
y

(
m
J
)
ID
TOP 3.1A
4.5A
BOTTOM 10A