ChipFind - документация

Электронный компонент: IRF6644TR1

Скачать:  PDF   ZIP
Control Fet
background image
www.irf.com
1
10/20/04
IRF6644
DirectFET
Power MOSFET
DirectFET
ISOMETRIC
MN
PD - 96908
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
Fig 1. Typical On-Resistance Vs. Gate Voltage
Typical values (unless otherwise specified)
Click on this section to link to the appropriate technical paper.
Click on this section to link to the DirectFET MOSFETs
Repetitive rating; pulse width limited by max. junction temperature.
Starting T
J
= 25C, L = 12mH, R
G
= 25
, I
AS
= 6.2A.
Surface mounted on 1 in. square Cu board, steady state.
T
C
measured with thermocouple mounted to top (Drain) of part.
Fig 2. Typical On-Resistance Vs. Gate Voltage
Description
The IRF6644 combines the latest HEXFET Power MOSFET Silicon technology with the advanced DirectFET
TM
packaging to achieve the
lowest on-state resistance in a package that has the footprint of an SO-8 and only 0.7 mm profile. The DirectFET package is compatible with
existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques,
when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided
cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6644 is optimized for primary side bridge topologies in isolated DC-DC applications, for wide range universal input Telecom applications
(36V - 75V), and for secondary side synchronous rectification in regulated DC-DC topologies. The reduced total losses in the device coupled
with the high level of thermal performance enables high efficiency and low temperatures, which are key for system reliability improvements,
and makes this device ideal for high performance isolated DC-DC converters.
Notes:
S Q
S X
S T
M Q
M X
M T
M N
l
Lead and Bromide Free
l
Low Profile (<0.7 mm)
l
Dual Sided Cooling Compatible
l
Ultra Low Package Inductance
l
Optimized for High Frequency Switching
l
Ideal for High Performance Isolated Converter
Primary Switch Socket
l
Optimized for Synchronous Rectification
l
Low Conduction Losses
l
Compatible with existing Surface Mount Techniques
Absolute Maximum Ratings
Parameter
Units
V
DS
Drain-to-Source Voltage
V
V
GS
Gate-to-Source Voltage
I
D
@ T
A
= 25C
Continuous Drain Current, V
GS
@ 10V
h
I
D
@ T
A
= 70C
Continuous Drain Current, V
GS
@ 10V
h
A
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
k
I
DM
Pulsed Drain Current
e
E
AS
Single Pulse Avalanche Energy
f
mJ
I
AR
Avalanche Current
e
A
220
Max.
8.3
60
82
20
100
10.3
6.2
4.0
6.0
8.0
10.0
12.0
14.0
16.0
VGS, Gate-to-Source Voltage (V)
0.00
0.04
0.08
0.12
T
y
p
i
c
a
l


R
D
S
(
o
n
)
,


(
)
TJ = 25C
TJ = 125C
ID = 6.2A
0
20
40
60
QG Total Gate Charge (nC)
0
4
8
12
16
20
V
G
S
,

G
a
t
e
-
t
o
-
S
o
u
r
c
e

V
o
l
t
a
g
e

(
V
)
ID= 6.2A
VDS= 50V
VDS= 20V
V
DSS
V
GS
R
DS(on)
100V max 20V max 10.7m
@ 10V
Q
g tot
Q
gd
V
gs(th)
35nC
11.5nC
3.7V
background image
IRF6644
2
www.irf.com
Pulse width
400s; duty cycle 2%.
Notes:
Static @ T
J
= 25C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
BV
DSS
Drain-to-Source Breakdown Voltage
100
V
V
DSS
/
T
J
Breakdown Voltage Temp. Coefficient
0.11
V/C
R
DS(on)
Static Drain-to-Source On-Resistance
10.7
13
m
V
GS(th)
Gate Threshold Voltage
2.8
4.8
V
V
GS(th)
/
T
J
Gate Threshold Voltage Coefficient
-10
mV/C
I
DSS
Drain-to-Source Leakage Current
20
A
250
I
GSS
Gate-to-Source Forward Leakage
100
nA
Gate-to-Source Reverse Leakage
-100
gfs
Forward Transconductance
15
S
Q
g
Total Gate Charge
35
47
Q
gs1
Pre-Vth Gate-to-Source Charge
8.0
Q
gs2
Post-Vth Gate-to-Source Charge
1.6
nC
Q
gd
Gate-to-Drain Charge
11.5
17.3
Q
godr
Gate Charge Overdrive
13
See Fig. 17
Q
sw
Switch Charge (Q
gs2
+ Q
gd
)
13.1
Q
oss
Output Charge
17
nC
R
G
Gate Resistance
1.0
2.0
t
d(on)
Turn-On Delay Time
17
t
r
Rise Time
26
t
d(off)
Turn-Off Delay Time
34
ns
t
f
Fall Time
16
C
iss
Input Capacitance
2210
C
oss
Output Capacitance
420
pF
C
rss
Reverse Transfer Capacitance
100
C
oss
Output Capacitance
2120
C
oss
Output Capacitance
240
Diode Characteristics
Parameter
Min. Typ. Max. Units
I
S
Continuous Source Current
10
(Body Diode)
A
I
SM
Pulsed Source Current
82
(Body Diode)
e
V
SD
Diode Forward Voltage
1.3
V
t
rr
Reverse Recovery Time
42
63
ns
Q
rr
Reverse Recovery Charge
69
100
nC
MOSFET symbol
R
G
=6.2
V
DS
= 25V
Conditions
V
GS
= 0V, V
DS
= 80V, f=1.0MHz
V
GS
= 0V, V
DS
= 1.0V, f=1.0MHz
V
DS
= 16V, V
GS
= 0V
V
DD
= 50V, V
GS
= 10V
g
V
GS
= 0V
= 1.0MHz
I
D
= 6.2A
V
DS
= V
GS
, I
D
= 150A
V
DS
= 100V, V
GS
= 0V
Conditions
V
GS
= 0V, I
D
= 250A
Reference to 25C, I
D
= 1mA
V
GS
= 10V, I
D
= 10.3A
g
T
J
= 25C, I
F
= 6.2A, V
DD
= 50V
di/dt = 100A/s
g
T
J
= 25C, I
S
= 6.2A, V
GS
= 0V
g
showing the
integral reverse
p-n junction diode.
I
D
= 6.2A
V
DS
= 80V, V
GS
= 0V, T
J
= 125C
V
GS
= 20V
V
GS
= -20V
V
GS
= 10V
V
DS
= 10V, I
D
= 6.2A
V
DS
= 50V
background image
IRF6644
www.irf.com
3
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
Surface mounted on 1 in. square Cu board, steady state.
Used double sided cooling , mounting pad.
Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
Notes:
T
C
measured with thermocouple incontact with top (Drain) of part.
R
is measured at
T
J
of approximately 90C.
Surface mounted on 1 in. square Cu
board (still air).
Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
Mounted to a PCB with a
thin gap filler and heat sink.
(still air)
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
10
100
T
h
e
r
m
a
l

R
e
s
p
o
n
s
e

(

Z

t
h
J
A
)
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
J
J
1
1
2
2
3
3
R
1
R
1
R
2
R
2
R
3
R
3
Ci i
/Ri
Ci=
i/Ri
C
4
4
R
4
R
4
Ri (C/W)
i (sec)
0.6784 0.00086
17.299 0.57756
17.566 8.94
9.4701 106
Absolute Maximum Ratings
Parameter
Units
P
D
@T
A
= 25C
Power Dissipation
h
W
P
D
@T
A
= 70C
Power Dissipation
h
P
D
@T
C
= 25C
Power Dissipation
k
T
P
Peak Soldering Temperature
C
T
J
Operating Junction and
T
STG
Storage Temperature Range
Thermal Resistance
Parameter
Typ.
Max.
Units
R
JA
Junction-to-Ambient
hl
45
R
JA
Junction-to-Ambient
il
12.5
R
JA
Junction-to-Ambient
jl
20
C/W
R
JC
Junction-to-Case
kl
1.4
R
J-PCB
Junction-to-PCB Mounted
1.0
270
-40 to + 150
Max.
89
2.8
1.8
background image
IRF6644
4
www.irf.com
Fig 5. Typical Output Characteristics
Fig 4. Typical Output Characteristics
Fig 6. Typical Transfer Characteristics
Fig 7. Normalized On-Resistance vs. Temperature
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
Fig 9. Normalized Typical On-Resistance Vs.
Drain Current and Gate Voltage
1
10
100
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
100000
C
,

C
a
p
a
c
i
t
a
n
c
e

(
p
F
)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
3.0
4.0
5.0
6.0
7.0
VGS, Gate-to-Source Voltage (V)
0.01
0.10
1.00
10.00
100.00
I D
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t
(
)
VDS = 10V
60s PULSE WIDTH
TJ = 150C
TJ = 25C
TJ = -40C
-60 -40 -20
0
20 40 60 80 100 120 140 160
TJ , Junction Temperature (C)
0.5
1.0
1.5
2.0
T
y
p
i
c
a
l


R
D
S
(
o
n
),
(
N
o
r
m
a
l
i
z
e
d
)
ID = 10.3A
VGS = 10V
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
1
10
100
I D
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
60s PULSE WIDTH
Tj = 25C
6.0V
VGS
TOP 15V
10V
8.0V
7.0V
BOTTOM
6.0V
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
1
10
100
I D
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
60s PULSE WIDTH
Tj = 150C
6.0V
VGS
TOP 15V
10V
8.0V
7.0V
BOTTOM
6.0V
0
4
8
12
16
20
ID, Drain Current (A)
0.95
1.00
1.05
1.10
1.15
1.20
1.25
T
y
p
i
c
a
l


R
D
S
(
o
n
)
(
N
o
r
m
a
l
i
z
e
d
)
TA= 25C
VGS = 8.0V
VGS = 7.0V
VGS = 10V
VGS = 15V
background image
IRF6644
www.irf.com
5
Fig 13. Threshold Voltage vs. Temperature
Fig 12. Maximum Drain Current vs. Case Temperatur10
Fig 10. Typical Source-Drain Diode Forward Voltage
Fig11. Maximum Safe Operating Area
Fig 14. Maximum Avalanche Energy Vs. Drain Current
0.0
1.0
2.0
3.0
4.0
5.0
VSD, Source-to-Drain Voltage (V)
0.1
1.0
10.0
100.0
1000.0
I S
D
,

R
e
v
e
r
s
e

D
r
a
i
n

C
u
r
r
e
n
t

(
A
)
VGS = 0V
TJ = 150C
TJ = 25C
TJ = -40C
25
50
75
100
125
150
Starting TJ, Junction Temperature (C)
0
200
400
600
800
1000
E
A
S
,
S
i
n
g
l
e

P
u
l
s
e

A
v
a
l
a
n
c
h
e

E
n
e
r
g
y

(
m
J
)
I D
TOP
2.8A
3.3A
BOTTOM
6.2A
25
50
75
100
125
150
TJ , Junction Temperature (C)
0
2
4
6
8
10
12
I D
,

D
r
a
i
n

C
u
r
r
e
n
t

(
A
)
0
0
1
10
100
1000
VDS , Drain-toSource Voltage (V)
0.1
1
10
100
1000
I D
,


D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
Tc = 25C
Tj = 150C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100sec
DC
-50
-25
0
25
50
75
100
125
150
TJ , Junction Temperature ( C )
2.0
2.5
3.0
3.5
4.0
4.5
5.0
T
y
p
i
c
a
l


V
G
S
(
t
h
)

G
a
t
e

t
h
r
e
s
h
o
l
d

V
o
l
t
a
g
e

(
V
)
ID = 1.0A
ID = 1.0mA
ID = 250A
ID = 150A