ChipFind - документация

Электронный компонент: IRF7314

Скачать:  PDF   ZIP
www.docs.chipfind.ru
background image
PRELIMINARY
HEXFET
Power MOSFET
PD - 9.1436B
Fifth Generation HEXFETs from International Rectifier
utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This
benefit, combined with the fast switching speed and
ruggedized device design that HEXFET Power
MOSFETs are well known for, provides the designer
with an extremely efficient and reliable device for use
in a wide variety of applications.
The SO-8 has been modified through a customized
leadframe for enhanced thermal characteristics and
multiple-die capability making it ideal in a variety of
power applications. With these improvements, multiple
devices can be used in an application with dramatically
reduced board space. The package is designed for
vapor phase, infra red, or wave soldering techniques.
11/18/97
S O -8
V
DSS
= -20V
R
DS(on)
= 0.058
IRF7314
Description
Symbol
Maximum
Units
Drain-Source Voltage
V
DS
-20
Gate-Source Voltage
V
GS
12
T
A
= 25C
-5.3
T
A
= 70C
-4.3
Pulsed Drain Current
I
DM
-21
Continuous Source Current (Diode Conduction)
I
S
-2.5
T
A
= 25C
2.0
T
A
= 70C
1.3
Single Pulse Avalanche Energy
E
AS
150
mJ
Avalanche Current
I
AR
-2.9
A
Repetitive Avalanche Energy
E
AR
0.20
mJ
Peak Diode Recovery dv/dt
dv/dt
-5.0
V/ ns
Junction and Storage Temperature Range
T
J,
T
STG
-55 to + 150
C
Thermal Resistance Ratings
Parameter
Symbol
Limit
Units
Maximum Junction-to-Ambient
R
JA
62.5
C/W
Absolute Maximum Ratings
( T
A
= 25C Unless Otherwise Noted)
Continuous Drain Current
Maximum Power Dissipation
A
I
D
P
D
V
W
D 1
D 1
D 2
D 2
G 1
S2
G 2
S 1
T o p V ie w
8
1
2
3
4
5
6
7
l
Generation V Technology
l
Ultra Low On-Resistance
l
Dual P-Channel MOSFET
l
Surface Mount
l
Fully Avalanche Rated
background image
IRF7314
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
-0.78 -1.0
V
T
J
= 25C, I
S
= -2.9A, V
GS
= 0V
t
rr
Reverse Recovery Time
47
71
ns
T
J
= 25C, I
F
= -2.9A
Q
rr
Reverse RecoveryCharge
49
73
nC
di/dt = 100A/s
Source-Drain Ratings and Characteristics
-21
-2.5
A
Surface mounted on FR-4 board, t
10sec.
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
I
SD
-2.9A, di/dt
-77A/s, V
DD
V
(BR)DSS
,
T
J
150C
Notes:
Starting T
J
= 25C, L = 35mH
R
G
= 25
, I
AS
= -2.9A.
Pulse width
300s; duty cycle
2%.
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
-20
V
V
GS
= 0V, I
D
= -250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
0.031
V/C
Reference to 25C, I
D
= -1mA
0.049 0.058
V
GS
= -4.5V, I
D
= -2.9A
0.082 0.098
V
GS
= -2.7V, I
D
= -1.5A
V
GS(th)
Gate Threshold Voltage
-0.70
V
V
DS
= V
GS
, I
D
= -250A
g
fs
Forward Transconductance
5.9
S
V
DS
= -10V, I
D
= -1.5A
-1.0
V
DS
= -16V, V
GS
= 0V
-25
V
DS
= -16V, V
GS
= 0V, T
J
= 55C
Gate-to-Source Forward Leakage
100
V
GS
= -12V
Gate-to-Source Reverse Leakage
-100
V
GS
= 12V
Q
g
Total Gate Charge
19
29
I
D
= -2.9A
Q
gs
Gate-to-Source Charge
4.0
6.1
nC
V
DS
= -16V
Q
gd
Gate-to-Drain ("Miller") Charge
7.7
12
V
GS
= -4.5V, See Fig. 10
t
d(on)
Turn-On Delay Time
15
22
V
DD
= -10V
t
r
Rise Time
40
60
I
D
= -2.9A
t
d(off)
Turn-Off Delay Time
42
63
R
G
= 6.0
t
f
Fall Time
49
73
R
D
= 3.4
C
iss
Input Capacitance
780
V
GS
= 0V
C
oss
Output Capacitance
470
pF
V
DS
= -15V
C
rss
Reverse Transfer Capacitance
240
= 1.0MHz, See Fig. 5
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
I
GSS
A
R
DS(on)
Static Drain-to-Source On-Resistance
I
DSS
Drain-to-Source Leakage Current
nA
ns
S
D
G
background image
IRF7314
Fig 3. Typical Transfer Characteristics
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 4. Typical Source-Drain Diode
Forward Voltage
1
10
100
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
V = -10V
20s PULSE WIDTH
DS
-V , Gate-to-Source Voltage (V)
-I , Drain-to-Source Current (A)
GS
D
T = 25 C
J
T = 150 C
J
0.1
1
10
100
0.2
0.4
0.6
0.8
1.0
1.2
1.4
-V ,Source-to-Drain Voltage (V)
-I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 25 C
J
T = 150 C
J
0.1
1
10
100
0.1
1
10
20s PULSE WIDTH
T = 25 C
J
TOP
BOTTOM
VGS
-7.50V
-4.50V
-4.00V
-3.50V
-3.00V
-2.70V
-2.00V
-1.50V
-V , Drain-to-Source Voltage (V)
-I , Drain-to-Source Current (A)
DS
D
-1.50V
0.1
1
10
100
0.1
1
10
20s PULSE WIDTH
T = 150 C
J
TOP
BOTTOM
VGS
-7.50V
-4.50V
-4.00V
-3.50V
-3.00V
-2.70V
-2.00V
-1.50V
-V , Drain-to-Source Voltage (V)
-I , Drain-to-Source Current (A)
DS
D
-1.50V
background image
IRF7314
Fig 8. Maximum Avalanche Energy
Vs. Drain Current
Fig 6. Typical On-Resistance Vs. Drain
Current
Fig 7. Typical On-Resistance Vs. Gate
Voltage
Fig 5. Normalized On-Resistance
Vs. Temperature
R
DS(on
)
, Drain-to-Source On Resistance (
)
R
DS(on)
, Drain-to-Source On Resistance (
)
25
50
75
100
125
150
0
100
200
300
400
Starting T , Junction Temperature ( C)
E , Single Pulse Avalanche Energy (mJ)
J
AS
ID
TOP
BOTTOM
-1.3A
-2.3A
-2.9A
0.0
0.5
1.0
1.5
2.0
-60
-40
-20
0
2 0
4 0
6 0
8 0
1 0 0
1 2 0
1 4 0
1 6 0
J
T , J u nc tion T em pe rature (C )
R
, D
r
a
i
n
-
to
-S
o
u
r
c
e
O
n
R
e
s
i
s
t
a
n
c
e
DS
(
o
n
)
(N
o
r
m
a
l
i
z
e
d
)
A
I = -2 .9 A
V = -4 .5 V
D
G S
0.0
0.2
0.4
0.6
0.8
0
4
8
1 2
1 6
2 0
A
-I , Drain Current (A)
D
V = -4.5V
G S
V = -2.7V
G S
0.03
0.04
0.05
0.06
0.07
0.08
0.0
2.0
4.0
6.0
8.0
A
G S
V , G ate-to-Source Voltage (V)
I = -5.3A
D
background image
IRF7314
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
Fig 10. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 9. Typical Capacitance Vs.
Drain-to-Source Voltage
0
200
400
600
800
1000
1200
1400
1
10
10 0
C
,
C
apaci
t
a
n
c
e
(
p
F
)
A
D S
-V , D rain-to -S ourc e V oltage (V )
V = 0 V , f = 1 M H z
C = C + C , C S H O R TE D
C = C
C = C + C
G S
is s g s g d d s
rs s g d
o ss d s gd
C
is s
C
o s s
C
rs s
0
2
4
6
8
1 0
0
5
10
15
20
25
30
G
GS
A
-V , Gate-to-Source Voltage (V)
Q , Total Gate Charge (nC)
I = -2.9A
V = -16V
D
D S
0.1
1
10
100
0.00001
0.0001
0.001
0.01
0.1
1
10
100
Notes:
1. Duty factor D = t / t
2. Peak T = P
x Z
+ T
1
2
J
DM
thJA
A
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response
(Z )
1
thJA
0.01
0.02
0.05
0.10
0.20
0.50
SINGLE PULSE
(THERMAL RESPONSE)