ChipFind - документация

Электронный компонент: IRF7475

Скачать:  PDF   ZIP
www.docs.chipfind.ru
background image
www.irf.com
1
11/12/02
IRF7475
HEXFET
Power MOSFET
Notes
through
are on page 10
Benefits
l
Very Low R
DS(on)
at 4.5V V
GS
l
Ultra-Low Gate Impedance
l
Fully Characterized Avalanche Voltage
and Current
Applications
l
High Frequency Point-of-Load
Synchronous Buck Converter for
Applications in Networking &
Computing Systems.
Top View
8
1
2
3
4
5
6
7
D
D
D
D
G
S
A
S
S
A
SO-8
Absolute Maximum Ratings
Parameter
Units
V
DS
Drain-to-Source Voltage
V
V
GS
Gate-to-Source Voltage
I
D
@ T
A
= 25C
Continuous Drain Current, V
GS
@ 10V
I
D
@ T
A
= 100C
Continuous Drain Current, V
GS
@ 10V
A
I
DM
Pulsed Drain Current
c
P
D
@T
A
= 25C
Power Dissipation
g
W
P
D
@T
A
= 70C
Power Dissipation
g
Linear Derating Factor
W/C
T
J
Operating Junction and
C
T
STG
Storage Temperature Range
Thermal Resistance
Parameter
Typ.
Max.
Units
R
JL
Junction-to-Drain Lead
20
C/W
R
JA
Junction-to-Ambient
f
50
-55 to + 150
2.5
0.02
1.6
Max.
11
7.0
88
12
12
PD - 94531A
V
DSS
R
DS(on)
max
Qg
12V
15m
:@V
GS
= 4.5V
19nC
background image
IRF7475
2
www.irf.com
S
D
G
Static @ T
J
= 25C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
BV
DSS
Drain-to-Source Breakdown Voltage
12
V
V
DSS
/
T
J
Breakdown Voltage Temp. Coefficient
0.014
V/C
R
DS(on)
Static Drain-to-Source On-Resistance
11.5
15
m
20
50
V
GS(th)
Gate Threshold Voltage
0.6
2.0
V
V
GS(th)
Gate Threshold Voltage Coefficient
3.2
mV/C
I
DSS
Drain-to-Source Leakage Current
100
A
250
I
GSS
Gate-to-Source Forward Leakage
200
nA
Gate-to-Source Reverse Leakage
-200
gfs
Forward Transconductance
22
S
Q
g
Total Gate Charge
13
19
Q
gs1
Pre-Vth Gate-to-Source Charge
2.6
Q
gs2
Post-Vth Gate-to-Source Charge
1.5
nC
Q
gd
Gate-to-Drain Charge
3.9
Q
godr
Gate Charge Overdrive
5.0
See Fig. 16
Q
sw
Switch Charge (Q
gs2
+ Q
gd
)
5.4
Q
oss
Output Charge
17
nC
t
d(on)
Turn-On Delay Time
7.5
t
r
Rise Time
33
t
d(off)
Turn-Off Delay Time
13
ns
t
f
Fall Time
7.5
C
iss
Input Capacitance
1590
C
oss
Output Capacitance
1310
pF
C
rss
Reverse Transfer Capacitance
260
Avalanche Characteristics
Parameter
Units
E
AS
Single Pulse Avalanche Energy
dh
mJ
I
AR
Avalanche Current
A
E
AR
Repetitive Avalanche Energy
mJ
Diode Characteristics
Parameter
Min. Typ. Max. Units
I
S
Continuous Source Current
11
(Body Diode)
A
I
SM
Pulsed Source Current
88
(Body Diode)
h
V
SD
Diode Forward Voltage
1.3
V
t
rr
Reverse Recovery Time
42
63
ns
Q
rr
Reverse Recovery Charge
44
66
nC
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
V
DS
= 10V, V
GS
= 0V
V
DD
= 6.0V, V
GS
= 4.5V
f
I
D
= 8.8A
V
DS
= 6.0V
V
GS
= 12V
V
GS
= -12V
Conditions
0.25
Max.
Conditions
V
GS
= 0V, I
D
= 250A
Reference to 25C, I
D
= 1mA
V
GS
= 4.5V, I
D
= 8.8A
f
V
DS
= V
GS
, I
D
= 250A
V
DS
= 9.6V, V
GS
= 0V
V
DS
= 9.6V, V
GS
= 0V, T
J
= 125C
Clamped Inductive Load
V
DS
= 6.0V, I
D
= 8.8A
180
T
J
= 25C, I
F
= 8.8A, V
DD
= 10V
di/dt = 100A/s
f
T
J
= 25C, I
S
= 8.8A, V
GS
= 0V
f
showing the
integral reverse
p-n junction diode.
8.8
MOSFET symbol
V
GS
= 2.8V, I
D
= 5.5A
f
V
GS
= 4.5V
Typ.
I
D
= 7.0A
V
GS
= 0V
V
DS
= 6.0V
= 1.0MHz
background image
IRF7475
www.irf.com
3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
VGS, Gate-to-Source Voltage
1
2
3
4
5
I D
,

Dr
a
i
n
-
t
o
-
S
o
u
rc
e
Cu
rre
n
t
(A)
1
10
100
T
J
= 25C
T
J
= 150C
V
DS
= 10V
20s PULSE WIDTH
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
I D
,
Dra
i
n
-
t
o
-S
o
u
rc
e
Cu
rre
n
t (A
)
0.1
1
10
100
V
GS
TOP 10V
8.0V
4.5V
3.5V
3.0V
2.8V
2.25V
BOTTOM 2.0V
2.0V
20s PULSE WIDTH
T
J
= 25C
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
I D
,
D
r
a
i
n
-
t
o
-
S
ou
r
c
e C
u
r
r
ent
(A)
0.1
1
10
100
V
GS
TOP 10V
8.0V
4.5V
3.5V
3.0V
2.8V
2.25V
BOTTOM 2.0V
2.0V
20s PULSE WIDTH
T
J
= 150C
T
J
, Junction Temperature (C)
-60
-40
-20
0
20
40
60
80
100
120
140
160
R
DS
(o
n
)
,
D
r
ai
n-
t
o
-
S
o
u
r
c
e
O
n

R
e
si
s
t
an
ce
(No
r
m
a
l
i
z
e
d
)
0.0
0.5
1.0
1.5
2.0
I
D
= 11A
V
GS
= 4.5V
background image
IRF7475
4
www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
V
DS
, Drain-to-Source voltage (V)
1
10
100
C,
Ca
p
a
c
i
t
a
n
c
e

(p
F
)
100
1000
10000
C
iss
C
oss
C
rss
V
GS
= 0V, f = 1 MHZ
C
iss
= C
gs
+ C
gd
, C
ds
SHORTED
C
rss
= C
gd
C
oss
= C
ds
+ C
gd
V
SD
, Source-to-Drain Voltage (V)
0.0
0.5
1.0
1.5
2.0
I
SD
,
Re
v
e
rs
e

Dr
a
i
n
Cu
rre
n
t
(A
)
0.1
1
10
100
VGS = 0V
T
J
= 25C
T
J
= 150C
V
DS
, Drain-to-Source Voltage (V)
0.1
1
10
100
I
D
,
Dra
i
n
-
t
o
-S
o
u
rc
e
Cu
rre
n
t

(A)
0.1
1
10
100
1000
OPERATION IN THIS AREA
LIMITED BY R
DS
(on)
10msec
1msec
10sec
T
C
= 25C
T
J
= 150C
Single Pulse
Q
G
, Total Gate Charge (nC)
0
5
10
15
20
V
GS
,
G
a
t
e
-
t
o-
S
o
u
r
c
e

V
o
lt
ag
e (
V
)
0
1
2
3
4
5
6
I
D
= 7.0A
V
DS
= 12V
V
DS
= 6.0V
background image
IRF7475
www.irf.com
5
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10. Threshold Voltage Vs. Temperature
T
J
, Temperature (C)
-75
-50
-25
0
25
50
75
100
125
150
V
GS
(
t
h
)
, G
a
te
T
h
r
e
s
h
o
l
d
V
o
l
t
a
g
e
(
V
)
0.8
1.0
1.2
1.4
1.6
I
D
= 250A
25
50
75
100
125
150
0
3
6
9
12
T , Case Temperature ( C)
I
,
D
r
ai
n C
u
r
r
ent
(
A
)
C
D
0.1
1
10
100
0.00001
0.0001
0.001
0.01
0.1
1
10
100
Notes:
1. Duty factor D = t / t
2. Peak T = P
x Z
+ T
1
2
J
DM
thJA
A
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
T
her
m
a
l
R
e
sponse
(Z )
1
thJA
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)