ChipFind - документация

Электронный компонент: IRF7476

Скачать:  PDF   ZIP
www.docs.chipfind.ru
background image
www.irf.com
1
04/29/02
IRF7476
HEXFET
Power MOSFET
Notes
through
are on page 8
Symbol
Parameter
Typ.
Max.
Units
R
JL
Junction-to-Drain Lead
20
R
JA
Junction-to-Ambient
50
C/W
Thermal Resistance
Absolute Maximum Ratings
Symbol
Parameter
Max.
Units
V
DS
Drain-Source Voltage
12
V
V
GS
Gate-to-Source Voltage
12 V
I
D
@ T
A
= 25C
Continuous Drain Current, V
GS
@ 10V
15
I
D
@ T
A
= 70C
Continuous Drain Current, V
GS
@ 10V
12
A
I
DM
Pulsed Drain Current
120
P
D
@T
A
= 25C
Maximum Power Dissipation
2.5
W
P
D
@T
A
= 70C
Maximum Power Dissipation
1.6
W
Linear Derating Factor 0.02 W/C
T
J
, T
STG
Junction and Storage Temperature Range
-55 to + 150
C
SO-8
T o p V ie w
8
1
2
3
4
5
6
7
D
D
D
D
G
S
A
S
S
A
V
DSS
R
DS(on)
max
I
D
12V
8.0
m
@V
GS
= 4.5V
15A
PD - 94311
Applications
Benefits
l
Ultra-Low Gate Impedance
l
Very Low R
DS(on)
l
Fully Characterized Avalanche Voltage
and Current
l
High Frequency 3.3V and 5V input Point-
of-Load Synchronous Buck Converters for
Netcom and Computing Applications.
l
Power Management for Netcom,
Computing and Portable Applications.
background image
IRF7476
2
www.irf.com
Symbol
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
0.87
1.2
V
T
J
= 25C, I
S
= 12A, V
GS
= 0V
0.73
T
J
= 125C, I
S
= 12A, V
GS
= 0V
t
rr
Reverse Recovery Time
55
82
ns
T
J
= 25C, I
F
= 12A, V
R
=12V
Q
rr
Reverse Recovery Charge
59
89
nC
di/dt = 100A/s
t
rr
Reverse Recovery Time
54
81
ns
T
J
= 125C, I
F
= 12A, V
R
=12V
Q
rr
Reverse Recovery Charge
60
90
nC
di/dt = 100A/s
Dynamic @ T
J
= 25C (unless otherwise specified)
ns
Symbol
Parameter
Typ.
Max.
Units
E
AS
Single Pulse Avalanche Energy
160
mJ
I
AR
Avalanche Current
12
A
Avalanche Characteristics
S
D
G
Diode Characteristics
2.5
120
A
Symbol
Parameter
Min. Typ. Max. Units
Conditions
g
fs
Forward Transconductance
31
S
V
DS
= 6.0V, I
D
= 12A
Q
g
Total Gate Charge
26 40 I
D
= 12A
Q
gs
Gate-to-Source Charge
4.6
nC
V
DS
= 10V
Q
gd
Gate-to-Drain ("Miller") Charge
11
V
GS
= 4.5V
Q
oss
Output Gate Charge
17
V
GS
= 0V, V
DS
= 5.0V
t
d(on)
Turn-On Delay Time
11
V
DD
= 6.0V
t
r
Rise Time
29
I
D
= 12A
t
d(off)
Turn-Off Delay Time
19
R
G
= 1.8
t
f
Fall Time
8.3
V
GS
= 4.5V
C
iss
Input Capacitance
2550
V
GS
= 0V
C
oss
Output Capacitance
2190
V
DS
= 6.0V
C
rss
Reverse Transfer Capacitance
450
pF
= 1.0MHz
V
SD
Diode Forward Voltage
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
12
V
V
GS
= 0V, I
D
= 250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
0.014 V/C Reference to 25C, I
D
= 1mA
6.0
8.0
V
GS
= 4.5V, I
D
= 15A
12
30
V
GS
= 2.8V, I
D
= 12A
V
GS(th)
Gate Threshold Voltage
0.6
1.9
V
V
DS
= V
GS
, I
D
= 250A
100
A
V
DS
= 9.6V, V
GS
= 0V
250
V
DS
= 9.6V, V
GS
= 0V, T
J
= 125C
Gate-to-Source Forward Leakage
200
V
GS
= 12V
Gate-to-Source Reverse Leakage
-200
nA
V
GS
= -12V
Static @ T
J
= 25C (unless otherwise specified)
I
GSS
I
DSS
Drain-to-Source Leakage Current
R
DS(on)
Static Drain-to-Source On-Resistance
m
background image
IRF7476
www.irf.com
3
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance
Vs. Temperature
1.5
2.0
2.5
3.0
3.5
4.0
VGS, Gate-to-Source Voltage (V)
0.10
1.00
10.00
100.00
1000.00
I D
, Drain-to-Source Current
(
)
TJ = 25C
TJ = 150C
VDS = 10V
20s PULSE WIDTH
-60
-40
-20
0
20
40
60
80
100
120
140
160
0.0
0.5
1.0
1.5
2.0
R , Drain-to-Source On Resistance
(Normalized)
DS(on)
V
=
I
=
GS
D
4.5V
15A
T
j
, Junction Temperature (C)
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
0.001
0.01
0.1
1
10
100
1000
I D
, Drain-to-Source Current (A)
1.5V
20s PULSE WIDTH
Tj = 25C
V
GS
TOP 10V
8.0V
5.0V
4.5V
3.5V
2.7V
2.0V
BOTTOM 1.5V
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
1000
I D
, Drain-to-Source Current (A)
1.5V
20s PULSE WIDTH
Tj = 150C
V
GS
TOP 10V
8.0V
5.0V
4.5V
3.5V
2.7V
2.0V
BOTTOM 1.5V
background image
IRF7476
4
www.irf.com
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
Fig 8. Maximum Safe Operating Area
0.1
1
10
100
1000
0.2
0.4
0.6
0.8
1.0
1.2
1.4
I , Reverse Drain Current (A)
SD
V = 0 V
GS
T = 150 C
J
T = 25 C
J
0
5
10
15
20
25
30
0
1
2
3
4
5
6
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
I
=
D
12A
V
= 2.4V
DS
V
= 6V
DS
V
= 9.6V
DS
1
10
100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
100000
C, Capacitance(pF)
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
V
SD
, Source-to-Drain Voltage (V)
0
1
10
100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
I D
, Drain-to-Source Current (A)
Tc = 25C
Tj = 150C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100sec
background image
IRF7476
www.irf.com
5
Fig 10. Maximum Effective Transient Thermal Impedance, Junction-to-Case
0.1
1
10
100
0.0001
0.001
0.01
0.1
1
10
100
1000
Notes:
1. Duty factor D =
t / t
2. Peak T
= P
x Z
+ T
1
2
J
DM
thJA
A
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response
(Z )
1
thJA
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
V
DS
Pulse Width
1
s
Duty Factor
0.1 %
R
D
V
GS
R
G
D.U.T.
4.5V
+
-
V
DD
25
50
75
100
125
150
0
3
6
9
12
15
I , Drain Current (A)
D
T
c
, Case Temperature (C)