ChipFind - документация

Электронный компонент: IRF7504

Скачать:  PDF   ZIP
PD - 9.1267G
HEXFET
Power MOSFET
V
DSS
= -20V
R
DS(on)
= 0.27
Fifth Generation HEXFETs from International Rectifier
utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This benefit,
combined with the fast switching speed and ruggedized
device design that HEXFET Power MOSFETs are well
known for, provides the designer with an extremely efficient
and reliable device for use in a wide variety of applications.
The new Micro8 package, with half the footprint area of the
standard SO-8, provides the smallest footprint available in
an SOIC outline. This makes the Micro8 an ideal device for
applications where printed circuit board space is at a
premium. The low profile (<1.1mm) of the Micro8 will allow
it to fit easily into extremely thin application environments
such as portable electronics and PCMCIA cards.
M icro8
l
Generation V Technology
l
Ultra Low On-Resistance
l
Dual P-Channel MOSFET
l
Very Small SOIC Package
l
Low Profile (<1.1mm)
l
Available in Tape & Reel
l
Fast Switching
IRF7504
D 1
D 1
D 2
D 2
G 1
S 2
G 2
S 1
T o p V iew
8
1
2
3
4
5
6
7
8/25/97
Parameter
Max.
Units
I
D
@ T
A
= 25C
Continuous Drain Current, V
GS
@ -4.5V
-1.7
I
D
@ T
A
= 70C
Continuous Drain Current, V
GS
@ -4.5V
-1.4
A
I
DM
Pulsed Drain Current
-9.6
P
D
@T
A
= 25C
Power Dissipation
1.25
W
Linear Derating Factor
10
mW/C
V
GS
Gate-to-Source Voltage
12
V
dv/dt
Peak Diode Recovery dv/dt
-5.0
V/ns
T
J,
T
STG
Junction and Storage Temperature Range
-55 to + 150
C
Absolute Maximum Ratings
Description
All Micro8 Data Sheets reflect improved Thermal Resistance, Power and Current -Handling Ratings- effective
only for product marked with Date Code 505 or later .
Thermal Resistance
Parameter
Typ.
Max.
Units
R
JA
Maximum Junction-to-Ambient
100
C/W
IRF7504
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
-20
V
V
GS
= 0V, I
D
= -250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
-0.012
V/C
Reference to 25C, I
D
= -1mA
0.27
V
GS
= -4.5V, I
D
= -1.2A
0.40
V
GS
= -2.7V, I
D
= -0.60A
V
GS(th)
Gate Threshold Voltage
-0.70
V
V
DS
= V
GS
, I
D
= -250A
g
fs
Forward Transconductance
1.3
S
V
DS
= -10V, I
D
= -0.60A
-1.0
V
DS
= -16V, V
GS
= 0V
-25
V
DS
= -16V, V
GS
= 0V, T
J
= 125C
Gate-to-Source Forward Leakage
-100
V
GS
= -12V
Gate-to-Source Reverse Leakage
100
V
GS
= +12V
Q
g
Total Gate Charge
5.4
8.2
I
D
= -1.2A
Q
gs
Gate-to-Source Charge
0.96
1.4
nC
V
DS
= -16V
Q
gd
Gate-to-Drain ("Miller") Charge
2.4
3.6
V
GS
= -4.5V, See Fig. 6 and 9
t
d(on)
Turn-On Delay Time
9.1
V
DD
= -10V
t
r
Rise Time
35
I
D
= -1.2A
t
d(off)
Turn-Off Delay Time
38
R
G
= 6.0
t
f
Fall Time
43
R
D
= 8.3
,
See Fig. 10
C
iss
Input Capacitance
240
V
GS
= 0V
C
oss
Output Capacitance
130
pF
V
DS
= -15V
C
rss
Reverse Transfer Capacitance
64
= 1.0MHz, See Fig. 5
A
nA
ns
I
GSS
I
DSS
Drain-to-Source Leakage Current
R
DS(ON)
Static Drain-to-Source On-Resistance
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
-1.2
V
T
J
= 25C, I
S
= -1.2A, V
GS
= 0V
t
rr
Reverse Recovery Time
52
78
ns
T
J
= 25C, I
F
= -1.2A
Q
rr
Reverse RecoveryCharge
63
95
nC
di/dt = 100A/s
t
on
Forward Turn-On Time
Source-Drain Ratings and Characteristics
A
-1.25
-9.6
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
S
D
G
Notes:
Pulse width
300s; duty cycle
2%.
I
SD
-1.2A, di/dt
100A/s, V
DD
V
(BR)DSS
,
T
J
150C
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
Surface mounted on FR-4 board, t
10sec.
IRF7504
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
0 . 0 1
0 . 1
1
1 0
1 0 0
0 . 1
1
1 0
D
D S
20 s P U LSE W I DTH
T = 25 C
A
-I

,
D
r
a
i
n
-
t
o
-S
o
u
rc
e
C
u
rre
n
t
(A
)
-V , D ra in-to-S ou rce V o lta ge (V )
J
-1.5 V
VGS
TOP - 7.5V
- 5.0V
- 4.0V
- 3.5V
- 3.0V
- 2.5V
- 2.0V
BOTT OM - 1.5V
0 . 0 1
0 . 1
1
1 0
1 0 0
0 . 1
1
1 0
D
D S
20 s P UL SE W I DTH
T = 150 C
A
-
I
,
D
r
ai
n-
t
o
-
S
our
c
e
C
u
r
r
ent
(
A
)
-V , Dra in -to-So urce V oltag e (V )
J
VGS
TOP - 7.5V
- 5.0V
- 4.0V
- 3.5V
- 3.0V
- 2.5V
- 2.0V
BOTT OM - 1.5V
- 1.5V
0 . 0 1
0 . 1
1
1 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0
4 . 5
5 . 0
T = 2 5 C
T = 1 5 0 C
J
J
G S
D
A
-
I
, D
r
a
i
n
-
to
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(
A
)
-V , Ga te -to -S o u rce V o ltag e (V )
V = -1 0 V
2 0 s P U L S E W ID T H
DS
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
- 6 0
- 4 0
- 2 0
0
2 0
4 0
6 0
8 0
1 0 0
1 2 0
1 4 0
1 6 0
J
T , Ju nctio n T emp eratu re (C)
R
,
D
r
a
i
n
-
to
-
S
o
u
r
c
e
O
n
R
e
s
i
s
t
a
n
c
e
D
S
(
on)
(
N
o
r
m
a
l
i
z
ed)
A
I = -1. 2A
V = -4.5 V
D
G S
Fig 2. Typical Output Characteristics
Fig 4. Normalized On-Resistance
Vs. Temperature
IRF7504
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
0
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
1
1 0
1 0 0
C
,
C
a
p
a
c
i
t
a
nc
e (
p
F
)
A
D S
-V , D ra in-to-S ource V oltag e (V)
V = 0V , f = 1 MH z
C = C + C , C SH O R TED
C = C
C = C + C
G S
iss gs gd ds
rs s g d
os s ds gd
C
is s
C
o s s
C
rs s
0
2
4
6
8
1 0
0
2
4
6
8
1 0
G
GS
A
-
V


, G
a
te
-
t
o
-
S
o
u
r
c
e

V
o
l
t
a
g
e
(
V
)
Q , To tal G ate C ha rg e (n C)
I = -1 .2A
V = -1 6V
FOR TE ST C IR C U IT
SE E FIG U R E 9
D
D S
0 . 0 1
0 . 1
1
1 0
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
T = 25 C
T = 15 0C
J
J
V = 0 V
G S
S D
SD
A
-I
,

R
e
v
e
rs
e

D
r
a
i
n
C
u
rre
n
t
(A
)
-V , S ou rce -to -Drain V olta ge (V )
0 . 1
1
1 0
1 0 0
1
1 0
1 0 0
OPE R ATIO N IN TH IS A RE A LI MI TE D
BY R
D S(o n)
T = 25 C
T = 15 0C
S ing le Pulse
A
-
I
, D
r
a
i
n

C
u
r
r
e
n
t (
A
)
-V , D rain-to-S ource Volta ge (V )
D S
D
A
J
1 00s
1m s
10m s
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 8. Maximum Safe Operating Area
IRF7504
Q
G
Q
GS
Q
GD
V
G
Charge
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
Fig 9a. Basic Gate Charge Waveform
+
-
Fig 10a. Switching Time Test Circuit
V
DS
Pulse Width
1
s
Duty Factor
0.1 %
R
D
V
GS
V
DD
R
G
D.U.T.
-4.5V
Fig 10b. Switching Time Waveforms
D.U.T.
V
DS
I
D
I
G
-3mA
V
GS
.3
F
50K
.2
F
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
Fig 9b. Gate Charge Test Circuit
-4.5V
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
0.1
1
10
100
1000
0.00001
0.0001
0.001
0.01
0.1
1
10
100
Notes:
1. Duty factor D =
t / t
2. Peak T
= P
x Z
+ T
1
2
J
DM
thJA
A
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response
(Z )
1
thJA
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)