ChipFind - документация

Электронный компонент: IRF9540N

Скачать:  PDF   ZIP
IRF9540N
HEXFET
Power MOSFET
PD - 91437B
Parameter
Max.
Units
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ -10V
-23
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ -10V
-16
A
I
DM
Pulsed Drain Current
-76
P
D
@T
C
= 25C
Power Dissipation
140
W
Linear Derating Factor
0.91
W/C
V
GS
Gate-to-Source Voltage
20
V
E
AS
Single Pulse Avalanche Energy
430
mJ
I
AR
Avalanche Current
-11
A
E
AR
Repetitive Avalanche Energy
14
mJ
dv/dt
Peak Diode Recovery dv/dt
-5.0
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
C
Mounting torque, 6-32 or M3 srew
10 lbfin (1.1Nm)
Absolute Maximum Ratings
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
1.1
R
CS
Case-to-Sink, Flat, Greased Surface
0.50
C/W
R
JA
Junction-to-Ambient
62
Thermal Resistance
V
DSS
= -100V
R
DS(on)
= 0.117
I
D
= -23A
l
Advanced Process Technology
l
Dynamic dv/dt Rating
l
175C Operating Temperature
l
Fast Switching
l
P-Channel
l
Fully Avalanche Rated
5/13/98
S
D
G
TO-220AB
Description
Fifth Generation HEXFETs from International Rectifier
utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This
benefit, combined with the fast switching speed and
ruggedized device design that HEXFET Power
MOSFETs are well known for, provides the designer
with an extremely efficient and reliable device for use
in a wide variety of applications.
The TO-220 package is universally preferred for all
commercial-industrial applications at power dissipation
levels to approximately 50 watts. The low thermal
resistance and low package cost of the TO-220
contribute to its wide acceptance throughout the
industry.
IRF9540N
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
-1.6
V
T
J
= 25C, I
S
= -11A, V
GS
= 0V
t
rr
Reverse Recovery Time
150
220
ns
T
J
= 25C, I
F
= -11A
Q
rr
Reverse RecoveryCharge
830 1200
nC
di/dt = -100A/s
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
-100
V
V
GS
= 0V, I
D
= -250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
-0.11
V/C
Reference to 25C, I
D
= -1mA
R
DS(on)
Static Drain-to-Source On-Resistance
0.117
V
GS
= -10V, I
D
= -11A
V
GS(th)
Gate Threshold Voltage
-2.0
-4.0
V
V
DS
= V
GS
, I
D
= -250A
g
fs
Forward Transconductance
5.3
S
V
DS
= -50V, I
D
= -11A
-25
A
V
DS
= -100V, V
GS
= 0V
-250
V
DS
= -80V, V
GS
= 0V, T
J
= 150C
Gate-to-Source Forward Leakage
100
V
GS
= 20V
Gate-to-Source Reverse Leakage
-100
nA
V
GS
= -20V
Q
g
Total Gate Charge
97
I
D
= -11A
Q
gs
Gate-to-Source Charge
15
nC
V
DS
= -80V
Q
gd
Gate-to-Drain ("Miller") Charge
51
V
GS
= -10V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time
15
V
DD
= -50V
t
r
Rise Time
67
I
D
= -11A
t
d(off)
Turn-Off Delay Time
51
R
G
= 5.1
t
f
Fall Time
51
R
D
= 4.2
,
See Fig. 10
Between lead,
6mm (0.25in.)
from package
and center of die contact
C
iss
Input Capacitance
1300
V
GS
= 0V
C
oss
Output Capacitance
400
pF
V
DS
= -25V
C
rss
Reverse Transfer Capacitance
240
= 1.0MHz, See Fig. 5
nH
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
L
D
Internal Drain Inductance
L
S
Internal Source Inductance
I
GSS
ns
4.5
7.5
I
DSS
Drain-to-Source Leakage Current
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
I
SD
-11A, di/dt
-470A/s, V
DD
V
(BR)DSS
,
T
J
175C
Notes:
Starting T
J
= 25C, L = 7.1mH
R
G
= 25
, I
AS
= -11A. (See Figure 12)
Pulse width
300s; duty cycle
2%.
S
D
G
Source-Drain Ratings and Characteristics
A
S
D
G
-23
-76
IRF9540N
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
1
1 0
1 0 0
0 . 1
1
1 0
1 0 0
D
D S
2 0 s P U LS E W ID T H
T = 2 5C
c
A
-I
,
D
r
a
i
n
-
t
o
-S
o
u
rc
e
C
u
rre
n
t
(A
)
-V , D rain-to-S ourc e V olta ge (V )
VGS
TO P - 15V
- 10V
- 8.0V
- 7.0V
- 6.0V
- 5.5V
- 5.0V
BOT TOM - 4.5V
-4 .5V
1
1 0
1 0 0
0.1
1
1 0
1 0 0
D
D S
A
-
I
,
Dr
ai
n
-
t
o
-
S
ou
r
c
e Cur
r
e
n
t
(
A
)
-V , D rain-to-S ource V oltage (V )
VGS
TOP - 15V
- 10V
- 8.0V
- 7.0V
- 6.0V
- 5.5V
- 5.0V
BOTTOM - 4.5V
-4 .5V
2 0 s P U LS E W ID T H
T = 1 75 C
C
0 . 1
1
1 0
1 0 0
4
5
6
7
8
9
1 0
T = 25 C
J
G S
D
A
-I

,
D
r
a
i
n
-
t
o
-S
o
u
rc
e

C
u
rre
n
t
(A
)
-V , Ga te -to-S ource V olta ge (V )
V = -2 5 V
2 0 s P U L S E W ID TH
DS
T = 1 7 5C
J
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
- 6 0
- 4 0
- 2 0
0
2 0
4 0
6 0
8 0
1 0 0 1 2 0 1 4 0 1 6 0 1 8 0
J
T , Junction T em perature (C )
R
, D
r
a
i
n
-
to
-
S
o
u
r
c
e
O
n
R
e
s
i
s
ta
n
c
e
D
S
(
on)
(N
o
r
m
a
l
i
z
e
d
)
A
V = -1 0V
G S
I = -19 A
D
J
J
IRF9540N
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
0
5 0 0
1 0 0 0
1 5 0 0
2 0 0 0
2 5 0 0
3 0 0 0
1
1 0
1 0 0
C
,
Cap
ac
i
t
a
n
c
e
(
p
F
)
A
D S
-V , D rain-to-S ourc e V oltage (V )
V = 0V , f = 1M H z
C = C + C , C S H O R T E D
C = C
C = C + C
G S
is s g s g d d s
rs s g d
o ss d s gd
C
is s
C
os s
C
rs s
0
4
8
1 2
1 6
2 0
0
2 0
4 0
6 0
8 0
1 0 0
G
GS
A
-
V
, G
a
te
-
t
o
-
S
o
u
r
c
e
V
o
l
t
a
g
e
(
V
)
Q , Total G ate C harge (nC )
V = -80 V
V = -50 V
V = -20 V
D S
D S
D S
F O R T E S T C IR C U IT
S E E F IG U R E 1 3
I = -1 1A
D
0 . 1
1
1 0
1 0 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4
1 . 6
T = 2 5C
J
V = 0V
G S
S D
SD
A
-
I

,
Rev
er
s
e
D
r
a
i
n Cur
r
e
n
t
(
A
)
-V , S ourc e-to -D rain V oltage (V )
T = 17 5C
J
1
1 0
1 0 0
1 0 0 0
1
1 0
1 0 0
1 0 0 0
O P E R A T IO N IN T H IS A R E A L IM ITE D
B Y R
D S (o n)
1 0 m s
A
-I
,
D
r
a
i
n
C
u
rre
n
t
(A
)
-V , D ra in -to -S o urc e V o lta g e (V )
D S
D
1 0 0 s
1 m s
T = 25 C
T = 17 5C
S ing le P u ls e
C
J
IRF9540N
Fig 10a. Switching Time Test Circuit
Fig 10b. Switching Time Waveforms
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
V
DS
-10V
Pulse Width
1
s
Duty Factor
0.1 %
R
D
V
GS
V
DD
R
G
D.U.T.
+
-
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
0.01
0.1
1
10
0.00001
0.0001
0.001
0.01
0.1
1
Notes:
1. Duty factor D =
t / t
2. Peak T = P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response
(Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
25
50
75
100
125
150
175
0
5
10
15
20
25
T , Case Temperature ( C)
I , Drain Current (A)
C
D