ChipFind - документация

Электронный компонент: IRF9Z34N

Скачать:  PDF   ZIP
IRF9Z34N
HEXFET
Power MOSFET
PD - 9.1485B
Fifth Generation HEXFETs from International Rectifier
utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This
benefit, combined with the fast switching speed and
ruggedized device design that HEXFET Power
MOSFETs are well known for, provides the designer
with an extremely efficient and reliable device for use
in a wide variety of applications.
The TO-220 package is universally preferred for all
commercial-industrial applications at power dissipation
levels to approximately 50 watts. The low thermal
resistance and low package cost of the TO-220
contribute to its wide acceptance throughout the
industry.
Parameter
Max.
Units
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ -10V
-19
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ -10V
-14
A
I
DM
Pulsed Drain Current
-68
P
D
@T
C
= 25C
Power Dissipation
68
W
Linear Derating Factor
0.45
W/C
V
GS
Gate-to-Source Voltage
20
V
E
AS
Single Pulse Avalanche Energy
180
mJ
I
AR
Avalanche Current
-10
A
E
AR
Repetitive Avalanche Energy
6.8
mJ
dv/dt
Peak Diode Recovery dv/dt
-5.0
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
C
Mounting torque, 6-32 or M3 screw
10 lbfin (1.1Nm)
Absolute Maximum Ratings
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
2.2
R
CS
Case-to-Sink, Flat, Greased Surface
0.50
C/W
R
JA
Junction-to-Ambient
62
Thermal Resistance
V
DSS
= -55V
R
DS(on)
= 0.10
I
D
= -19A
TO-220AB
l
Advanced Process Technology
l
Dynamic dv/dt Rating
l
175C Operating Temperature
l
Fast Switching
l
P-Channel
l
Fully Avalanche Rated
Description
8/25/97
S
D
G
IRF9Z34N
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
-1.6
V
T
J
= 25C, I
S
= -10A, V
GS
= 0V
t
rr
Reverse Recovery Time
54
82
ns
T
J
= 25C, I
F
= -10A
Q
rr
Reverse RecoveryCharge
110
160
nC
di/dt = -100A/s
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
-55
V
V
GS
= 0V, I
D
= -250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
-0.05
V/C
Reference to 25C, I
D
= -1mA
R
DS(on)
Static Drain-to-Source On-Resistance
0.10
V
GS
= -10V, I
D
= -10A
V
GS(th)
Gate Threshold Voltage
-2.0
-4.0
V
V
DS
= V
GS
, I
D
= -250A
g
fs
Forward Transconductance
4.2
S
V
DS
= 25V, I
D
= -10A
-25
A
V
DS
= -55V, V
GS
= 0V
-250
V
DS
= -44V, V
GS
= 0V, T
J
= 150C
Gate-to-Source Forward Leakage
100
V
GS
= 20V
Gate-to-Source Reverse Leakage
-100
nA
V
GS
= -20V
Q
g
Total Gate Charge
35
I
D
= -10A
Q
gs
Gate-to-Source Charge
7.9
nC
V
DS
= -44V
Q
gd
Gate-to-Drain ("Miller") Charge
16
V
GS
= -10V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time
13
V
DD
= -28V
t
r
Rise Time
55
I
D
= -10A
t
d(off)
Turn-Off Delay Time
30
R
G
= 13
t
f
Fall Time
41
R
D
= 2.6
,
See Fig. 10
Between lead,
6mm (0.25in.)
from package
and center of die contact
C
iss
Input Capacitance
620
V
GS
= 0V
C
oss
Output Capacitance
280
pF
V
DS
= -25V
C
rss
Reverse Transfer Capacitance
140
= 1.0MHz, See Fig. 5
nH
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
L
D
Internal Drain Inductance
L
S
Internal Source Inductance
I
GSS
ns
4.5
7.5
I
DSS
Drain-to-Source Leakage Current
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
I
SD
-10A, di/dt
-290A/s, V
DD
V
(BR)DSS
,
T
J
175C
Notes:
Starting T
J
= 25C, L = 3.6mH
R
G
= 25
, I
AS
= -10A. (See Figure 12)
Pulse width
300s; duty cycle
2%.
S
D
G
Source-Drain Ratings and Characteristics
A
S
D
G
-19
-68
IRF9Z34N
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
1
1 0
1 0 0
0 . 1
1
1 0
1 0 0
D
D S
2 0 s PU LS E W ID TH
T = 2 5C
c
A
-
I
,
D
r
ai
n-
t
o
-
S
our
c
e
C
u
r
r
ent
(
A
)
-V , Drain -to -So urce Vo ltag e (V)
VGS
TOP - 15V
- 10V
- 8.0V
- 7.0V
- 6.0V
- 5.5V
- 5.0V
BOTT OM - 4. 5V
-4 .5V
1
10
100
0.1
1
10
100
D
D S
A
-
I
,
D
r
ai
n-
t
o
-
S
o
u
r
c
e
C
u
r
r
en
t

(
A
)
-V , Dra in -to-So urce V oltag e (V )
VGS
TOP - 15V
- 10V
- 8.0V
- 7.0V
- 6.0V
- 5.5V
- 5.0V
BOTT OM - 4. 5V
-4 .5V
20 s PU LSE W ID TH
T = 1 75C
C
1
1 0
1 0 0
4
5
6
7
8
9
1 0
T = 2 5 C
J
G S
D
A
-
I
, D
r
a
i
n
-
to
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(
A
)
-V , Ga te -to -S o u rce V o ltag e (V )
V = -2 5 V
2 0 s P U L S E W ID T H
DS
T = 1 7 5 C
J
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
- 6 0
- 4 0
- 2 0
0
2 0
4 0
6 0
8 0
1 0 0 1 2 0 1 4 0 1 6 0 1 8 0
J
T , Ju nction T em pe rature (C )
R
,
D
r
a
i
n
-
to
-
S
o
u
r
c
e
O
n
R
e
s
i
s
t
a
n
c
e
D
S
(
on)
(
N
o
r
m
a
l
i
z
ed)
A
V = -10 V
G S
I = -1 7A
D
IRF9Z34N
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
0
4
8
12
16
20
0
10
20
30
40
G
GS
A
-
V


, G
a
te
-
t
o
-
S
o
u
r
c
e

V
o
l
t
a
g
e
(
V
)
Q , Tota l Gate Ch arge (n C)
FO R TEST C IR C U IT
SEE F IGU R E 1 3
I = -10 A
V = -44 V
V = -28 V
D
DS
DS
0 . 1
1
1 0
1 0 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4
1 . 6
T = 25 C
J
V = 0 V
G S
S D
SD
A
-I
,

R
e
v
e
rs
e

D
r
a
i
n
C
u
rre
n
t
(A
)
-V , So urce-to-D ra in V oltag e (V )
T = 17 5C
J
1
10
100
1000
1
10
100
OPE R ATIO N IN TH IS A RE A LI MI TE D
BY R
D S(o n)
10m s
A
-
I
, D
r
a
i
n

C
u
r
r
e
n
t (
A
)
-V , Dra in-to-So urce V olta ge (V )
D S
D
1 0s
100 s
1m s
T = 2 5C
T = 1 75C
Sin gle Pu ls e
C
J
0
200
400
600
800
1000
1200
1
10
100
C
,
C
a
p
a
c
i
t
a
nc
e (
p
F
)
A
D S
-V , D ra in-to-S ource V oltag e (V)
V = 0 V, f = 1M H z
C = C + C , C SH OR TE D
C = C
C = C + C
G S
is s gs gd ds
rss gd
oss d s gd
C
is s
C
o s s
C
rs s
IRF9Z34N
Fig 10a. Switching Time Test Circuit
Fig 10b. Switching Time Waveforms
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
V
DS
-10V
Pulse Width
1
s
Duty Factor
0.1 %
R
D
V
GS
V
DD
R
G
D.U.T.
+
-
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
0.01
0.1
1
10
0.00001
0.0001
0.001
0.01
0.1
Notes:
1. Duty factor D =
t / t
2. Peak T = P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response
(Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
25
50
75
100
125
150
175
0
5
10
15
20
T , Case Temperature
( C)
I , Drain Current (A)
C
D
IRF9Z34N
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Q
G
Q
GS
Q
GD
V
G
Charge
-10V
D.U.T.
V
DS
I
D
I
G
-3mA
V
GS
.3
F
50K
.2
F
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
( B R ) D S S
I
AS
R G
IA S
0 .0 1
t p
D .U .T
L
V D S
VD D
D R IV E R
A
15V
- 20V
0
100
200
300
400
500
25
50
75
100
125
150
175
J
E
,

S
i
n
g
l
e
P
u
l
s
e A
v
a
l
anc
he

E
ner
g
y
(
m
J
)
AS
A
Startin g T , Jun ctio n T emp era tu re (C)
I
TOP -4 .2A
-7.2 A
BO TTOM -10 A
D
IRF9Z34N
Peak Diode Recovery dv/dt Test Circuit
P.W.
Period
di/dt
Diode Recovery
dv/dt
Ripple
5%
Body Diode
Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D =
P.W.
Period
+
-
+
+
+
-
-
-
R
G
V
DD
dv/dt controlled by R
G
I
SD
controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
*
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
*
Reverse Polarity of D.U.T for P-Channel
V
GS
[ ]
[ ]
***
V
GS
= 5.0V for Logic Level and 3V Drive Devices
[ ] ***
Fig 14. For P-Channel HEXFETS
IRF9Z34N
L E A D A S S IG N M E N T S
1 - G A T E
2 - D R A I N
3 - S O U R C E
4 - D R A I N
- B -
1 .3 2 (. 0 5 2 )
1 .2 2 (. 0 4 8 )
3 X
0 . 5 5 (. 0 2 2 )
0 . 4 6 (. 0 1 8 )
2 .9 2 (. 1 1 5 )
2 .6 4 (. 1 0 4 )
4 . 6 9 ( .1 8 5 )
4 . 2 0 ( .1 6 5 )
3 X
0 . 9 3 ( .0 3 7 )
0 . 6 9 ( .0 2 7 )
4 . 0 6 (. 1 6 0 )
3 . 5 5 (. 1 4 0 )
1 . 1 5 ( .0 4 5 )
M IN
6 . 4 7 (. 2 5 5 )
6 . 1 0 (. 2 4 0 )
3 . 7 8 (. 1 4 9 )
3 . 5 4 (. 1 3 9 )
- A -
1 0 . 5 4 (. 4 1 5 )
1 0 . 2 9 (. 4 0 5 )
2 . 8 7 ( .1 1 3 )
2 . 6 2 ( .1 0 3 )
1 5 . 2 4 ( .6 0 0 )
1 4 . 8 4 ( .5 8 4 )
1 4 . 0 9 (.5 5 5 )
1 3 . 4 7 (.5 3 0 )
3 X
1 .4 0 (. 0 5 5 )
1 .1 5 (. 0 4 5 )
2 . 5 4 ( .1 0 0 )
2 X
0 .3 6 (. 0 1 4 ) M B A M
4
1 2 3
N O T E S :
1 D I M E N S IO N I N G & T O L E R A N C IN G P E R A N S I Y 1 4 .5 M , 1 9 8 2 . 3 O U T L IN E C O N F O R M S T O J E D E C O U T L I N E T O -2 2 0 A B .
2 C O N T R O L L I N G D IM E N S IO N : I N C H 4 H E A T S IN K & L E A D M E A S U R E M E N T S D O N O T IN C L U D E B U R R S .
P A RT NU M BE R
IN TE R NA T ION A L
R EC T IF IER
LO GO
E X AM PL E : T HI S IS A N IRF 1 01 0
W IT H A S S E MB L Y
L O T CO DE 9 B 1 M
A S S EM B L Y
LO T CO DE
D A TE C OD E
(Y YW W )
Y Y = YE A R
W W = W E EK
924 6
IR F 101 0
9B 1M
A
Part Marking Information
TO-220AB
Package Outline
TO-220AB Outline
Dimensions are shown in millimeters (inches)
P A RT NU M BE R
IN TE R NA T ION A L
R EC T IF IER
LO GO
E X AM PL E : T HI S IS A N IRF 1 01 0
W IT H A S S E MB L Y
L O T CO DE 9 B 1 M
A S S EM B L Y
LO T CO DE
D A TE C OD E
(Y YW W )
Y Y = YE A R
W W = W E EK
9246
IR F 1010
9B 1M
A
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331
EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111
IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371
http://www.irf.com/
Data and specifications subject to change without notice.
8/97