ChipFind - документация

Электронный компонент: IRFB23N20D

Скачать:  PDF   ZIP
Notes
through
are on page 11
www.irf.com
1
4/26/00
IRFB23N20D
IRFS23N20D
IRFSL23N20D
SMPS MOSFET
HEXFET
Power MOSFET
V
DSS
R
DS(on)
max
I
D
200V
0.10
24A
PD- 93904A
D
2
Pak
IRFS23N20D
TO-220AB
IRFB23N20D
TO-262
IRFSL23N20D
Parameter
Max.
Units
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
24
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ 10V
17
A
I
DM
Pulsed Drain Current
96
P
D
@T
A
= 25C
Power Dissipation
3.8
W
P
D
@T
C
= 25C
Power Dissipation
170
Linear Derating Factor
1.1
W/C
V
GS
Gate-to-Source Voltage
30
V
dv/dt
Peak Diode Recovery dv/dt
3.3
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
C
Mounting torqe, 6-32 or M3 screw
10 lbfin (1.1Nm)
Absolute Maximum Ratings
l
High frequency DC-DC converters
Benefits
Applications
l
Low Gate-to-Drain Charge to Reduce
Switching Losses
l
Fully Characterized Capacitance Including
Effective C
OSS
to Simplify Design, (See
App. Note AN1001)
l
Fully Characterized Avalanche Voltage
and Current
Typical SMPS Topologies
l
Telecom 48V input Forward Converter
IRFB/IRFS/IRFSL23N20D
2
www.irf.com
Parameter
Min. Typ. Max. Units
Conditions
g
fs
Forward Transconductance
13
S
V
DS
= 50V, I
D
= 14A
Q
g
Total Gate Charge
57 86 I
D
= 14A
Q
gs
Gate-to-Source Charge
14
21
nC
V
DS
= 160V
Q
gd
Gate-to-Drain ("Miller") Charge
27
40
V
GS
= 10V,
t
d(on)
Turn-On Delay Time
14
V
DD
= 100V
t
r
Rise Time
32
I
D
= 14A
t
d(off)
Turn-Off Delay Time
26
R
G
= 4.6
t
f
Fall Time
16
V
GS
= 10V
C
iss
Input Capacitance
1960
V
GS
= 0V
C
oss
Output Capacitance
300
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
65
pF
= 1.0MHz
C
oss
Output Capacitance
2200
V
GS
= 0V, V
DS
= 1.0V, = 1.0MHz
C
oss
Output Capacitance
120
V
GS
= 0V, V
DS
= 160V, = 1.0MHz
C
oss
eff.
Effective Output Capacitance
220
V
GS
= 0V, V
DS
= 0V to 160V
Dynamic @ T
J
= 25C (unless otherwise specified)
ns
Parameter
Typ.
Max.
Units
E
AS
Single Pulse Avalanche Energy
250
mJ
I
AR
Avalanche Current
14
A
E
AR
Repetitive Avalanche Energy
17
mJ
Avalanche Characteristics
S
D
G
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
1.3
V
T
J
= 25C, I
S
= 14A, V
GS
= 0V
t
rr
Reverse Recovery Time
200
300
ns
T
J
= 25C, I
F
= 14A
Q
rr
Reverse RecoveryCharge
1300 1940
nC
di/dt = 100A/s
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Diode Characteristics
24
96
A
Static @ T
J
= 25C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
200
V
V
GS
= 0V, I
D
= 250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
0.26 V/C Reference to 25C, I
D
= 1mA
R
DS(on)
Static Drain-to-Source On-Resistance
0.10
V
GS
= 10V, I
D
= 14A
V
GS(th)
Gate Threshold Voltage
3.0
5.5
V
V
DS
= V
GS
, I
D
= 250A
25
A
V
DS
= 200V, V
GS
= 0V
250
V
DS
= 160V, V
GS
= 0V, T
J
= 150C
Gate-to-Source Forward Leakage
100
V
GS
= 30V
Gate-to-Source Reverse Leakage
-100
nA
V
GS
= -30V
I
GSS
I
DSS
Drain-to-Source Leakage Current
Thermal Resistance
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
0.90
R
CS
Case-to-Sink, Flat, Greased Surface
0.50
C/W
R
JA
Junction-to-Ambient
62
R
JA
Junction-to-Ambient
40
IRFB/IRFS/IRFSL23N20D
www.irf.com
3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
-60 -40 -20
0
20
40
60
80 100 120 140 160 180
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
V
=
I =
GS
D
10V
24A
0.01
0.1
1
10
100
0.1
1
10
100
20s PULSE WIDTH
T = 25 C
J
TOP
BOTTOM
VGS
15V
12V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
5.0V
1
10
100
0.1
1
10
100
20s PULSE WIDTH
T = 175 C
J
TOP
BOTTOM
VGS
15V
12V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
5.0V
0.1
1
10
100
5.0
6.0
7.0
8.0
9.0
10.0
V = 50V
20s PULSE WIDTH
DS
V , Gate-to-Source Voltage (V)
I , Drain-to-Source Current (A)
GS
D
T = 25 C
J
T = 175 C
J
IRFB/IRFS/IRFSL23N20D
4
www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
0.1
1
10
100
0.2
0.5
0.8
1.1
1.4
V ,Source-to-Drain Voltage (V)
I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 25 C
J
T = 175 C
J
1
10
100
1000
1
10
100
1000
OPERATION IN THIS AREA LIMITED
BY R
DS(on)
Single Pulse
T
T
= 175 C
= 25 C
J
C
V , Drain-to-Source Voltage (V)
I , Drain Current (A)
I , Drain Current (A)
DS
D
10us
100us
1ms
10ms
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
100000
C, Capacitance (pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
0
20
40
60
80
100
0
4
8
12
16
20
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
FOR TEST CIRCUIT
SEE FIGURE
I =
D
13
14A
V
= 40V
DS
V
= 100V
DS
V
= 160V
DS
IRFB/IRFS/IRFSL23N20D
www.irf.com
5
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
V
DS
Pulse Width
1
s
Duty Factor
0.1 %
R
D
V
GS
R
G
D.U.T.
10V
+
-
V
DD
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
0.01
0.1
1
0.00001
0.0001
0.001
0.01
0.1
1
Notes:
1. Duty factor D =
t / t
2. Peak T = P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response
(Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
25
50
75
100
125
150
175
0
5
10
15
20
25
T , Case Temperature ( C)
I , Drain Current (A)
C
D