ChipFind - документация

Электронный компонент: IRFI520N

Скачать:  PDF   ZIP
HEXFET
Power MOSFET
IRFI520N
PD - 9.1362A
3/16/98
V
DSS
= 100V
R
DS(on)
= 0.20
I
D
= 7.6A
S
D
G
TO-220 FULLPAK
l
Advanced Process Technology
l
Isolated Package
l
High Voltage Isolation = 2.5KVRMS
l
Sink to Lead Creepage Dist. = 4.8mm
l
Fully Avalanche Rated
Parameter
Min.
Typ.
Max.
Units
R
JC
Junction-to-Case
5.0
R
JA
Junction-to-Ambient
65
Thermal Resistance
Parameter
Max.
Units
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
7.6
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ 10V
5.3
A
I
DM
Pulsed Drain Current
38
P
D
@T
C
= 25C
Power Dissipation
30
W
Linear Derating Factor
0.20
W/C
V
GS
Gate-to-Source Voltage
20
V
E
AS
Single Pulse Avalanche Energy
91
mJ
I
AR
Avalanche Current
5.7
A
E
AR
Repetitive Avalanche Current
3.0
mJ
dv/dt
Peak Diode Recovery dv/dt
5.0
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
C
Soldering Temperature, for 10 seconds
300 (1.6mm from case)
Mounting torque, 6-32 or M3 screw.
10 lbfin (1.1Nm)
Absolute Maximum Ratings
Description
Fifth Generation HEXFETs from International Rectifier
utilize advanced processing techniques to achieve the
lowest possible on-resistance per silicon area. This benefit,
combined with the fast switching speed and ruggedized
device design that HEXFET Power MOSFETs are well
known for, provides the designer with an extremely efficient
device for use in a wide variety of applications.
The TO-220 Fullpak eliminates the need for additional
insulating hardware in commercial-industrial applications.
The moulding compound used provides a high isolation
capability and a low thermal resistance between the tab
and external heatsink. This isolation is equivalent to using
a 100 micron mica barrier with standard TO-220 product.
The Fullpak is mounted to a heatsink using a single clip or
by a single screw fixing.
PRELIMINARY
C/W
IRFI520N
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
100
V
V
GS
= 0V, I
D
= 250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
0.11
V/C
Reference to 25C, I
D
= 1mA
R
DS(on)
Static Drain-to-Source On-Resistance
0.20
V
GS
= 10V, I
D
= 4.3A
V
GS(th)
Gate Threshold Voltage
2.0
4.0
V
V
DS
= V
GS
, I
D
= 250A
g
fs
Forward Transconductance
2.7
S
V
DS
= 25V, I
D
= 5.7A
25
V
DS
= 100V, V
GS
= 0V
250
V
DS
= 80V, V
GS
= 0V, T
J
= 150C
Gate-to-Source Forward Leakage
100
V
GS
= 20V
Gate-to-Source Reverse Leakage
-100
V
GS
= -20V
Q
g
Total Gate Charge
25
I
D
= 5.7A
Q
gs
Gate-to-Source Charge
4.4
nC
V
DS
= 80V
Q
gd
Gate-to-Drain ("Miller") Charge
11
V
GS
= 10V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time
4.5
V
DD
= 50V
t
r
Rise Time
23
I
D
= 5.7A
t
d(off)
Turn-Off Delay Time
32
R
G
= 22
t
f
Fall Time
23
R
D
= 8.6
,
See Fig. 10
Between lead,
6mm (0.25in.)
from package
and center of die contact
C
iss
Input Capacitance
330
V
GS
= 0V
C
oss
Output Capacitance
92
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
54
= 1.0MHz, See Fig. 5
C
Drain to Sink Capacitance
12
= 1.0MHz
nH
A
nA
I
DSS
Drain-to-Source Leakage Current
I
GSS
L
S
Internal Source Inductance
ns
S
D
G
4.5
7.5
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
L
D
Internal Drain Inductance
pF
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
1.3
V
T
J
= 25C, I
S
= 4.3A, V
GS
= 0V
t
rr
Reverse Recovery Time
99
150
ns
T
J
= 25C, I
F
= 5.7A
Q
rr
Reverse RecoveryCharge
390
580
nC
di/dt = 100A/s
Source-Drain Ratings and Characteristics
A
38
7.6
S
D
G
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
V
DD
= 25V, starting T
J
= 25C, L = 4.7mH
R
G
= 25
, I
AS
= 5.7A. (See Figure 12)
t=60s, =60Hz
I
SD
5.7A, di/dt
240A/s, V
DD
V
(BR)DSS
,
T
J
175C
Uses IRF520N data and test conditions
Pulse width
300s; duty cycle
2%.
IRFI520N
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
1
10
1 00
0.1
1
10
100
4 .5 V
I , D
r
a
i
n
-
to
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(A
)
D
V , D ra in-to-S o urc e V o lta ge (V )
D S
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
2 0 s P U L S E W ID TH
T = 1 7 5 C
C
A
1
10
1 00
0.1
1
10
100
I , D
r
a
i
n
-
to
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(A
)
D
V , D ra in-to-S o urc e V o lta ge (V )
D S
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
2 0 s P U L S E W ID TH
T = 2 5 C
C
A
4 .5 V
1
1 0
1 0 0
4
5
6
7
8
9
1 0
T = 2 5 C
J
G S
V , G a te -to -S o u rc e V o lta g e (V )
D
I

,

D
r
ai
n-
t
o
-
S
ou
r
c
e C
u
r
r
e
n
t
(
A
)
V = 5 0 V
2 0 s P U L S E W ID T H
D S
T = 1 7 5 C
J
A
0.0
0.5
1.0
1.5
2.0
2.5
3.0
-60
-40
-20
0
2 0
4 0
6 0
8 0
1 0 0 1 2 0 1 4 0 1 6 0 1 8 0
J
T , J unc tion T em perature (C )
R
, D
r
a
i
n
-
to
-S
o
u
r
c
e
O
n
R
e
s
i
s
t
a
n
c
e
DS
(
o
n
)
(N
o
r
m
a
l
i
z
e
d
)
V = 1 0 V
G S
A
I = 9 .5 A
D
IRFI520N
Fig 7. Typical Source-Drain Diode
Forward Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
0
10 0
20 0
30 0
40 0
50 0
60 0
1
10
10 0
C
,
C
apaci
t
a
n
c
e
(
p
F
)
D S
V , D rain-to -S ourc e V oltage (V )
A
V = 0 V , f = 1 M H z
C = C + C , C S H O R TE D
C = C
C = C + C
G S
is s g s g d d s
rs s g d
o ss d s gd
C
is s
C
o s s
C
rs s
0
4
8
12
16
20
0
5
1 0
15
20
2 5
Q , Tota l G ate C h arg e (n C )
G
V
, G
a
te
-
t
o
-
S
o
u
r
c
e
V
o
lta
g
e
(
V
)
GS
V = 8 0 V
V = 5 0 V
V = 2 0 V
D S
D S
D S
A
F O R TE S T C IR C U IT
S E E F IG U R E 1 3
I = 5 .7 A
D
1
1 0
1 0 0
0.4
0.6
0.8
1.0
1.2
1.4
T = 2 5 C
J
V = 0 V
G S
V , S o urc e-to -D rain V o lta ge (V )
I
,
R
e
v
e
r
s
e D
r
ai
n C
u
r
r
ent
(
A
)
S D
SD
A
T = 1 7 5 C
J
0.1
1
10
1 00
1
10
1 0 0
1 000
V , D ra in-to-S o urc e V o lta ge (V )
D S
I
,
D
r
ai
n C
u
r
r
e
nt
(
A
)
O P E R A T IO N IN T H IS A R E A L IM ITE D
B Y R
D
D S (on)
10 s
10 0 s
1 m s
10 m s
A
T = 2 5 C
T = 1 7 5 C
S in g le P u ls e
C
J
IRFI520N
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
V
DS
Pulse Width
1
s
Duty Factor
0.1 %
R
D
V
GS
R
G
D.U.T.
10V
+
-
V
DD
0.01
0.1
1
10
0.00001
0.0001
0.001
0.01
0.1
1
Notes:
1. Duty factor D = t / t
2. Peak T = P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response
(Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
25
50
75
100
125
150
175
0.0
2.0
4.0
6.0
8.0
T , Case Temperature ( C)
I , Drain Current (A)
C
D