ChipFind - документация

Электронный компонент: IRFP140N

Скачать:  PDF   ZIP
HEXFET
Power MOSFET
IRFP140N
Fifth Generation HEXFETs from International Rectifier
utilize advanced processing techniques to achieve the
lowest possible on-resistance per silicon area. This benefit,
combined with the fast switching speed and ruggedized
device design that HEXFET Power MOSFETs are well
known for, provides the designer with an extremely efficient
device for use in a wide variety of applications.
The TO-247 package is preferred for commercial-industrial
applications where higher power levels preclude the use of
TO-220 devices. The TO-247 is similar but superior to the
earlier TO-218 package because of its isolated mounting
hole.
l
Advanced Process Technology
l
Dynamic dv/dt Rating
l
175C Operating Temperature
l
Fast Switching
l
Fully Avalanche Rated
Description
10/5/98
V
DSS
= 100V
R
DS(on)
= 0.052
I
D
= 33A
S
D
G
Parameter
Min.
Typ.
Max.
Units
R
JC
Junction-to-Case
1.1
R
CS
Case-to-Sink, Flat, Greased Surface
0.24
C/W
R
JA
Junction-to-Ambient
40
Thermal Resistance
Parameter
Max.
Units
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
33
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ 10V
23
A
I
DM
Pulsed Drain Current
110
P
D
@T
C
= 25C
Power Dissipation
140
W
Linear Derating Factor
0.91
W/C
V
GS
Gate-to-Source Voltage
20
V
E
AS
Single Pulse Avalanche Energy
300
mJ
I
AR
Avalanche Current
16
A
E
AR
Repetitive Avalanche Energy
14
mJ
dv/dt
Peak Diode Recovery dv/dt
5.0
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
C
Soldering Temperature, for 10 seconds
300 (1.6mm from case)
Mounting torque, 6-32 or M3 screw.
10 lbfin (1.1Nm)
Absolute Maximum Ratings
TO-247AC
www.irf.com
1
PD - 91343B
IRFP140N
2
www.irf.com
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
100
V
V
GS
= 0V, I
D
= 250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
0.11
V/C
Reference to 25C, I
D
= 1mA
R
DS(on)
Static Drain-to-Source On-Resistance
0.052
V
GS
= 10V, I
D
= 16A
V
GS(th)
Gate Threshold Voltage
2.0
4.0
V
V
DS
= V
GS
, I
D
= 250A
g
fs
Forward Transconductance
11
S
V
DS
= 50V, I
D
= 16A
25
V
DS
= 100V, V
GS
= 0V
250
V
DS
= 80V, V
GS
= 0V, T
J
= 150C
Gate-to-Source Forward Leakage
100
V
GS
= 20V
Gate-to-Source Reverse Leakage
-100
V
GS
= -20V
Q
g
Total Gate Charge
94
I
D
= 16A
Q
gs
Gate-to-Source Charge
15
nC
V
DS
= 80V
Q
gd
Gate-to-Drain ("Miller") Charge
43
V
GS
= 10V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time
8.2
V
DD
= 50V
t
r
Rise Time
39
I
D
= 16A
t
d(off)
Turn-Off Delay Time
44
R
G
= 5.1
t
f
Fall Time
33
R
D
= 3.0
,
See Fig. 10
Between lead,
6mm (0.25in.)
from package
and center of die contact
C
iss
Input Capacitance
1400
V
GS
= 0V
C
oss
Output Capacitance
330
pF
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
170
= 1.0MHz, See Fig. 5
nH
A
nA
I
DSS
Drain-to-Source Leakage Current
I
GSS
L
S
Internal Source Inductance
ns
S
D
G
5.0
13
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
L
D
Internal Drain Inductance
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
I
SD
16A, di/dt
210A/s, V
DD
V
(BR)DSS
,
T
J
175C
Pulse width
300s; duty cycle
2%.
V
DD
= 25V, starting T
J
= 25C, L = 2.0mH
R
G
= 25
, I
AS
= 16A. (See Figure 12)
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
1.3
V
T
J
= 25C, I
S
= 16A, V
GS
= 0V
t
rr
Reverse Recovery Time
170
250
ns
T
J
= 25C, I
F
= 16A
Q
rr
Reverse RecoveryCharge
1.1
1.6
C
di/dt = 100A/s
Source-Drain Ratings and Characteristics
A
110
33
S
D
G
Uses IRF540N data and test conditions.
IRFP140N
www.irf.com
3
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
1
1 0
1 0 0
1 0 0 0
0 . 1
1
1 0
1 0 0
I
,
D
r
a
i
n
-
to
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(
A
)
D
V , D rain-to-S ou rc e Vo lta ge (V)
D S
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTO M 4.5V
20 s P U LS E W ID TH
T = 2 5C
C
A
4.5V
1
1 0
1 0 0
1 0 0 0
0.1
1
1 0
1 0 0
4.5 V
I
,
D
r
ai
n
-
t
o
-
S
ou
r
c
e Cur
r
e
nt
(
A
)
D
V , D rain-to-S ource V oltage (V )
DS
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
2 0 s P U L S E W ID T H
T = 17 5C
C
A
1
1 0
1 0 0
1 0 0 0
4
5
6
7
8
9
1 0
T = 2 5 C
J
G S
V , G ate-to -S o urce V oltag e (V )
D
I
,
D
r
a
i
n
-
to
-
S
o
u
r
c
e
C
u
r
r
e
n
t

(
A
)
V = 5 0V
2 0 s P U L S E W ID TH
DS
T = 1 75 C
J
A
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
- 6 0
- 4 0
- 2 0
0
2 0
4 0
6 0
8 0
1 0 0 1 2 0 1 4 0 1 6 0 1 8 0
J
T , Junction T em perature (C )
R
, D
r
a
i
n
-
to
-
S
o
u
r
c
e
O
n
R
e
s
i
s
ta
n
c
e
D
S
(
on)
(N
o
r
m
a
l
i
z
e
d
)
V = 10 V
G S
A
I = 2 7A
D
IRFP140N
4
www.irf.com
Fig 7. Typical Source-Drain Diode
Forward Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
0
4 0 0
8 0 0
1 2 0 0
1 6 0 0
2 0 0 0
2 4 0 0
1
1 0
1 0 0
C
,
Cap
ac
i
t
a
n
c
e
(
p
F
)
D S
V , D rain-to-S ourc e V oltage (V )
A
V = 0V , f = 1 M H z
C = C + C , C S H O R TE D
C = C
C = C + C
G S
iss g s g d d s
rs s g d
o ss ds g d
C
is s
C
os s
C
rs s
0
4
8
1 2
1 6
2 0
0
2 0
4 0
6 0
8 0
1 0 0
Q , T otal G ate C harge (nC )
G
V
, G
a
te
-
t
o
-
S
o
u
r
c
e
V
o
l
t
a
g
e
(
V
)
GS
V = 80 V
V = 50 V
V = 20 V
D S
D S
D S
A
F O R TE S T C IR C U IT
S E E F IG U R E 1 3
I = 16 A
D
1 0
1 0 0
1 0 0 0
0 . 4
0 . 8
1 . 2
1 . 6
2 . 0
T = 2 5C
J
V = 0V
G S
V , S o urc e-to-D rain V oltage (V )
I , R
e
v
e
r
s
e
D
r
a
i
n
C
u
r
r
e
n
t
(
A
)
S D
SD
A
T = 1 75 C
J
1
1 0
1 0 0
1 0 0 0
1
1 0
1 0 0
1 0 0 0
V , D ra in-to-S o u rce V o lta ge (V )
D S
I , D
r
a
i
n
C
u
r
r
e
n
t
(
A
)
O P E R A T IO N IN T H IS A R E A L IM ITE D
B Y R
D
D S (o n)
1 0 s
1 0 0 s
1 m s
1 0 m s
A
T = 25 C
T = 17 5C
S ing le P u ls e
C
J
IRFP140N
www.irf.com
5
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
V
DS
Pulse Width
1
s
Duty Factor
0.1 %
Fig 10b. Switching Time Waveforms
R
D
V
GS
R
G
D.U.T.
10V
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
+
-
V
DD
25
50
75
100
125
150
175
0
5
10
15
20
25
30
35
T , Case Temperature ( C)
I , Drain Current (A)
C
D
0.01
0.1
1
10
0.00001
0.0001
0.001
0.01
0.1
1
Notes:
1. Duty factor D =
t / t
2. Peak T = P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response
(Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)