ChipFind - документация

Электронный компонент: IRFP3710

Скачать:  PDF   ZIP
www.docs.chipfind.ru
background image
IRFP3710
HEXFET
Power MOSFET
Fifth Generation HEXFETs from International Rectifier
utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This
benefit, combined with the fast switching speed and
ruggedized device design that HEXFET Power
MOSFETs are well known for, provides the designer
with an extremely efficient and reliable device for use
in a wide variety of applications.
The TO-247 package is preferred for commercial-
industrial applications where higher power levels
preclude the use of TO-220 devices. The TO-247 is
similar but superior to the earlier TO-218 package
because of its isolated mounting hole.
S
D
G
V
DSS
= 100V
R
DS(on)
= 0.025
W
I
D
= 57A
l
Advanced Process Technology
l
Dynamic dv/dt Rating
l
175C Operating Temperature
l
Fast Switching
l
Fully Avalanche Rated
Description
TO-247AC
Parameter
Max.
Units
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
57
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ 10V
40
A
I
DM
Pulsed Drain Current
180
P
D
@T
C
= 25C
Power Dissipation
200
W
Linear Derating Factor
1.3
W/C
V
GS
Gate-to-Source Voltage
20
V
E
AS
Single Pulse Avalanche Energy
530
mJ
I
AR
Avalanche Current
28
A
E
AR
Repetitive Avalanche Energy
20
mJ
dv/dt
Peak Diode Recovery dv/dt
5.0
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
C
Mounting torque, 6-32 or M3 srew
10 lbfin (1.1Nm)
Absolute Maximum Ratings
Parameter
Typ.
Max.
Units
R
q
JC
Junction-to-Case
0.75
R
q
CS
Case-to-Sink, Flat, Greased Surface
0.24
C/W
R
q
JA
Junction-to-Ambient
40
Thermal Resistance
www.irf.com
1
PD-91490C
background image
IRFP3710
2
www.irf.com
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
100
V
V
GS
= 0V, I
D
= 250A
D
V
(BR)DSS
/
D
T
J
Breakdown Voltage Temp. Coefficient
0.12
V/C
Reference to 25C, I
D
= 1mA
R
DS(on)
Static Drain-to-Source On-Resistance
0.025
W
V
GS
= 10V, I
D
= 28A
V
GS(th)
Gate Threshold Voltage
2.0
4.0
V
V
DS
= V
GS
, I
D
= 250A
g
fs
Forward Transconductance
20
S
V
DS
= 25V, I
D
= 28A
25
A
V
DS
= 100V, V
GS
= 0V
250
V
DS
= 80V, V
GS
= 0V, T
J
= 150C
Gate-to-Source Forward Leakage
100
V
GS
= 20V
Gate-to-Source Reverse Leakage
-100
nA
V
GS
= -20V
Q
g
Total Gate Charge
190
I
D
= 28A
Q
gs
Gate-to-Source Charge
26
nC
V
DS
= 80V
Q
gd
Gate-to-Drain ("Miller") Charge
82
V
GS
= 1.7V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time
14
V
DD
= 50V
t
r
Rise Time
59
I
D
= 28A
t
d(off)
Turn-Off Delay Time
58
R
G
= 2.5
W
t
f
Fall Time
48
R
D
= 1.7
W,
See Fig. 10
Between lead,
6mm (0.25in.)
from package
and center of die contact
C
iss
Input Capacitance
3000
V
GS
= 0V
C
oss
Output Capacitance
640
pF
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
330
= 1.0MHz, See Fig. 5
nH
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
L
D
Internal Drain Inductance
L
S
Internal Source Inductance
S
D
G
I
GSS
ns
5.0
I
DSS
Drain-to-Source Leakage Current
13
Starting T
J
= 25C, L = 1.4mH
R
G
= 25
W
, I
AS
= 28A. (See Figure 12)
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
Notes:
I
SD
28A, di/dt
460A/s, V
DD
V
(BR)DSS
,
T
J
175C
Pulse width
300s; duty cycle
2%.
Uses IRF3710 data and test conditions
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
1.3
V
T
J
= 25C, I
S
= 28A, V
GS
= 0V
t
rr
Reverse Recovery Time
210
320
ns
T
J
= 25C, I
F
= 28A
Q
rr
Reverse RecoveryCharge
1.7
2.6
C
di/dt = 100A/s
Source-Drain Ratings and Characteristics
S
D
G
A
57
180
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
background image
IRFP3710
www.irf.com
3
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
1
10
100
10 00
0.1
1
10
100
I , D
r
a
i
n
-
to
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(A
)
D
V , D ra in-to-S o urc e V o lta ge (V )
D S
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
2 0 s P U L S E W ID TH
T = 2 5 C
C
A
4 .5 V
1
1 0
1 0 0
1 0 0 0
0 . 1
1
1 0
1 0 0
I , D
r
a
i
n
-
to
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(A
)
D
V , D ra in-to-S o urc e V o lta ge (V )
D S
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
A
4 .5 V
2 0 s P U L S E W ID TH
T = 1 7 5 C
C
1
1 0
1 0 0
1 0 0 0
4
5
6
7
8
9
1 0
T = 2 5 C
J
G S
V , G a te -to -S o u rc e V o lta g e (V )
D
I

,

D
r
ai
n-
t
o
-
S
ou
r
c
e C
u
r
r
e
n
t
(
A
)
V = 5 0 V
2 0 s P U L S E W ID T H
D S
A
T = 1 7 5 C
J
0.0
0.5
1.0
1.5
2.0
2.5
3.0
-60
-40
-20
0
2 0
4 0
6 0
8 0
1 0 0 1 2 0 1 4 0 1 6 0 1 8 0
J
T , J u nc tion T em perature (C )
R
, D
r
a
i
n
-
to
-S
o
u
r
c
e
O
n
R
e
s
i
s
t
a
n
c
e
DS
(
o
n
)
(N
o
r
m
a
l
i
z
e
d
)
V = 1 0 V
G S
A
I = 4 6 A
D
background image
IRFP3710
4
www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
0
1 00 0
2 00 0
3 00 0
4 00 0
5 00 0
6 00 0
1
1 0
100
C
,
C
apaci
t
a
n
c
e
(
p
F
)
D S
V , D rain-to -S ourc e V oltage (V )
A
V = 0 V , f = 1 M H z
C = C + C , C S H O R TE D
C = C
C = C + C
G S
iss g s gd ds
rss g d
o ss ds g d
C
is s
C
o s s
C
rs s
0
4
8
1 2
1 6
2 0
0
40
80
1 20
1 60
2 00
Q , Tota l G ate C h arg e (n C )
G
V
, G
a
te
-
t
o
-
S
o
u
r
c
e
V
o
lta
g
e
(
V
)
GS
V = 8 0 V
V = 5 0 V
V = 2 0 V
D S
D S
D S
A
F O R TE S T C IR C U IT
S E E F IG U R E 1 3
I = 2 8 A
D
1
1 0
1 0 0
1 0 0 0
0.4
0.8
1.2
1.6
2.0
T = 2 5 C
J
V = 0 V
G S
V , S o urc e-to -D rain V o lta ge (V )
I
,
R
e
v
e
r
s
e D
r
ai
n C
u
r
r
ent
(
A
)
S D
SD
A
T = 1 7 5 C
J
1
1 0
1 00
10 00
1
10
1 0 0
1 00 0
V , D ra in-to-S o urc e V o lta ge (V )
D S
I
,
D
r
ai
n C
u
r
r
e
nt
(
A
)
O P E R A T IO N IN T H IS A R E A L IM ITE D
B Y R
D
D S (on)
1 0 s
1 00 s
1m s
10 m s
A
T = 2 5 C
T = 1 7 5 C
S in g le P u ls e
C
J
background image
IRFP3710
www.irf.com
5
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
V
DS
Pulse Width
1
s
Duty Factor
0.1 %
R
D
V
GS
R
G
D.U.T.
10V
+
-
V
DD
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
25
50
75
100
125
150
175
0
10
20
30
40
50
60
T , Case Temperature ( C)
I , Drain Current (A)
C
D
0.01
0.1
1
0.00001
0.0001
0.001
0.01
0.1
1
Notes:
1. Duty factor D = t / t
2. Peak T = P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response
(Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)