ChipFind - документация

Электронный компонент: IRFR9120N

Скачать:  PDF   ZIP
www.docs.chipfind.ru
background image
IRFR/U9120N
PRELIMINARY
HEXFET
Power MOSFET
V
DSS
= -100V
R
DS(on)
= 0.48
I
D
= -6.6A
3/16/98
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
3.1
R
JA
Junction-to-Ambient (PCB mount)**
50
C/W
R
JA
Junction-to-Ambient
110
Thermal Resistance
D -P ak
T O -2 52 A A
I-P ak
T O -25 1 A A
l
Ultra Low On-Resistance
l
P-Channel
l
Surface Mount (IRFR9120N)
l
Straight Lead (IRFU9120N)
l
Advanced Process Technology
l
Fast Switching
l
Fully Avalanche Rated
Description
Parameter
Max.
Units
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ -10V
-6.6
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ -10V
-4.2
A
I
DM
Pulsed Drain Current
-26
P
D
@T
C
= 25C
Power Dissipation
40
W
Linear Derating Factor
0.32
W/C
V
GS
Gate-to-Source Voltage
20
V
E
AS
Single Pulse Avalanche Energy
100
mJ
I
AR
Avalanche Current
-6.6
A
E
AR
Repetitive Avalanche Energy
4.0
mJ
dv/dt
Peak Diode Recovery dv/dt
-5.0
V/ns
T
J
Operating Junction and
-55 to + 150
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
C
Absolute Maximum Ratings
Fifth Generation HEXFETs from International Rectifier
utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This benefit,
combined with the fast switching speed and ruggedized
device design that HEXFET Power MOSFETs are well
known for, provides the designer with an extremely efficient
and reliable device for use in a wide variety of applications.
The D-Pak is designed for surface mounting using vapor
phase, infrared, or wave soldering techniques. The straight
lead version (IRFU series) is for through-hole mounting
applications. Power dissipation levels up to 1.5 watts are
possible in typical surface mount applications.
S
D
G
PD - 9.1507A
background image
IRFR/U9120N
Source-Drain Ratings and Characteristics
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
-1.6
V
T
J
= 25C, I
S
= -3.9A, V
GS
= 0V
t
rr
Reverse Recovery Time
100
150
ns
T
J
= 25C, I
F
= -4.0A
Q
rr
Reverse Recovery Charge
420
630
nC
di/dt = 100A/s
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
-6.6
-26
A
Notes:
** When mounted on 1" square PCB (FR-4 or G-10 Material ) .
For recommended footprint and soldering techniques refer to application note #AN-994
This is applied for I-PAK, L
S
of D-PAK is measured between
lead and center of die contact
Starting T
J
= 25C, L = 13mH
R
G
= 25
, I
AS
= -3.9A. (See Figure 12)
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
I
SD
-4.0A, di/dt
300A/s, V
DD
V
(BR)DSS
,
T
J
150C
Pulse width
300s; duty cycle
2%.
S
D
G
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
-100
V
V
GS
= 0V, I
D
= -250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
-0.11
V/C
Reference to 25C, I
D
= -1mA
R
DS(on)
Static Drain-to-Source On-Resistance
0.48
V
GS
= -10V, I
D
= -3.9A
V
GS(th)
Gate Threshold Voltage
-2.0
-4.0
V
V
DS
= V
GS
, I
D
= -250A
g
fs
Forward Transconductance
1.4
S
V
DS
= -50V, I
D
= -4.0A
-25
A
V
DS
= -100V, V
GS
= 0V
-250
V
DS
= -80V, V
GS
= 0V, T
J
= 150C
Gate-to-Source Forward Leakage
100
V
GS
= 20V
Gate-to-Source Reverse Leakage
-100
nA
V
GS
= -20V
Q
g
Total Gate Charge
27
I
D
= -4.0A
Q
gs
Gate-to-Source Charge
5.0
nC
V
DS
= -80V
Q
gd
Gate-to-Drain ("Miller") Charge
15
V
GS
= -10V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time
14
V
DD
= -50V
t
r
Rise Time
47
I
D
= -4.0A
t
d(off)
Turn-Off Delay Time
28
R
G
=
12
t
f
Fall Time
31
R
D
=12
,
See Fig. 10
Between lead,
6mm (0.25in.)
from package
and center of die contact
C
iss
Input Capacitance
350
V
GS
= 0V
C
oss
Output Capacitance
110
pF
V
DS
= -25V
C
rss
Reverse Transfer Capacitance
70
= 1.0MHz, See Fig. 5
nH
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
L
D
Internal Drain Inductance
L
S
Internal Source Inductance
I
GSS
ns
4.5
7.5
I
DSS
Drain-to-Source Leakage Current
S
D
G
Uses IRF9520N data and test conditions.
background image
IRFR/U9120N
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
0.1
1
10
100
0.1
1
10
100
20s PULSE WIDTH
T = 25 C
J
TOP
BOTTOM
VGS
-15V
-10V
-8.0V
-7.0V
-6.0V
-5.5V
-5.0V
-4.5V
-V , Drain-to-Source Voltage (V)
-I , Drain-to-Source Current (A)
DS
D
-4.5V
0.1
1
10
100
0.1
1
10
100
20s PULSE WIDTH
T = 150 C
J
TOP
BOTTOM
VGS
-15V
-10V
-8.0V
-7.0V
-6.0V
-5.5V
-5.0V
-4.5V
-V , Drain-to-Source Voltage (V)
-I , Drain-to-Source Current (A)
DS
D
-4.5V
0.1
1
10
100
4
5
6
7
8
9
10
V = -50V
20s PULSE WIDTH
DS
-V , Gate-to-Source Voltage (V)
-I , Drain-to-Source Current (A)
GS
D
T = 25 C
J
T = 150 C
J
-60 -40 -20
0
20
40
60
80 100 120 140 160
0.0
0.5
1.0
1.5
2.0
2.5
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
V
=
I =
GS
D
-10V
-6.7A
background image
IRFR/U9120N
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
1
10
100
0
200
400
600
800
-V , Drain-to-Source Voltage (V)
C, Capacitance (pF)
DS
V
C
C
C
=
=
=
=
0V,
C
C
C
f = 1MHz
+ C
+ C
C SHORTED
GS
iss
gs
gd ,
ds
rss
gd
oss
ds
gd
C
iss
C
oss
C
rss
0
5
10
15
20
25
0
4
8
12
16
20
Q , Total Gate Charge (nC)
-V , Gate-to-Source Voltage (V)
G
GS
FOR TEST CIRCUIT
SEE FIGURE
I =
D
13
-4.0 A
V
= -20V
DS
V
= -50V
DS
V
= -80V
DS
0.1
1
10
100
0.2
0.8
1.4
2.0
2.6
-V ,Source-to-Drain Voltage (V)
-I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 25 C
J
T = 150 C
J
0.1
1
10
100
1
10
100
1000
OPERATION IN THIS AREA LIMITED
BY R
DS(on)
Single Pulse
T
T
= 150 C
= 25 C
J
C
-V , Drain-to-Source Voltage (V)
-I , Drain Current (A)
I , Drain Current (A)
DS
D
10us
100us
1ms
10ms
background image
IRFR/U9120N
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10a. Switching Time Test Circuit
Fig 10b. Switching Time Waveforms
V
DS
-10V
Pulse Width
1
s
Duty Factor
0.1 %
R
D
V
GS
V
DD
R
G
D.U.T.
+
-
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
25
50
75
100
125
150
0.0
2.0
4.0
6.0
8.0
T , Case Temperature ( C)
-I , Drain Current (A)
C
D
0.01
0.1
1
10
0.00001
0.0001
0.001
0.01
0.1
1
10
Notes:
1. Duty factor D = t / t
2. Peak T = P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response
(Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)