ChipFind - документация

Электронный компонент: IRFS4410

Скачать:  PDF   ZIP
www.docs.chipfind.ru
background image
11/4/04
Benefits
l
Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
l
Fully Characterized Capacitance and Avalanche
SOA
l
Enhanced body diode dV/dt and dI/dt Capability
PD - 96902A
www.irf.com
1
D
2
Pak
IRFS4410
TO-220AB
IRFB4410
TO-262
IRFSL4410
IRFB4410
IRFS4410
IRFSL4410
HEXFET
Power MOSFET
Applications
l
High Efficiency Synchronous Rectification in SMPS
l
Uninterruptible Power Supply
l
High Speed Power Switching
l
Hard Switched and High Frequency Circuits
S
D
G
S
D
G
S
D
G
S
D
G
V
DSS
100V
R
DS(on)
typ.
8.0m:
max.
10m:
I
D
96A
Absolute Maximum Ratings
Symbol
Parameter
Units
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
A
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ 10V
I
DM
Pulsed Drain Current
d
P
D
@T
C
= 25C
Maximum Power Dissipation
W
Linear Derating Factor
W/C
V
GS
Gate-to-Source Voltage
V
dv/dt
Peak Diode Recovery
f
V/ns
T
J
Operating Junction and
C
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
Mounting torque, 6-32 or M3 screw
Avalanche Characteristics
E
AS (Thermally limited)
Single Pulse Avalanche Energy
e
mJ
I
AR
Avalanche Current
c
A
E
AR
Repetitive Avalanche Energy
g
mJ
Thermal Resistance
Symbol
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
k
0.61
R
CS
Case-to-Sink, Flat Greased Surface , TO-220
0.50
C/W
R
JA
Junction-to-Ambient, TO-220
k
62
R
JA
Junction-to-Ambient (PCB Mount) , D
2
Pak
jk
40
220
See Fig. 14, 15, 16a, 16b
250
19
-55 to + 175
20
1.6
10lb
xin (1.1Nxm)
300
Max.
96
c
68
c
380
background image
IRFB4410/IRFS4410/IRFSL4410
2
www.irf.com
Notes:
Calculated continuous current based on maximum allowable junction
temperature. Package limitation current is 75A.
Repetitive rating; pulse width limited by max. junction
temperature.
Limited by T
Jmax
, starting T
J
= 25C, L = 0.14mH
R
G
= 25
, I
AS
= 58A, V
GS
=10V. Part not recommended for use
above this value.
I
SD
58A, di/dt 650A/s, V
DD
V
(BR)DSS
, T
J
175C.
Pulse width
400s; duty cycle 2%.
S
D
G
C
oss
eff. (TR) is a fixed capacitance that gives the same charging time
as C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
C
oss
eff. (ER) is a fixed capacitance that gives the same energy as
C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended
footprint and soldering techniques refer to application note #AN-994.
R
is measured at T
J
approximately 90C.
Static @ T
J
= 25C (unless otherwise specified)
Symbol
Parameter
Min. Typ. Max. Units
V
(BR)DSS
Drain-to-Source Breakdown Voltage
100
V
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
0.094
V/C
R
DS(on)
Static Drain-to-Source On-Resistance
8.0
10
m
V
GS(th)
Gate Threshold Voltage
2.0
4.0
V
I
DSS
Drain-to-Source Leakage Current
20
A
250
I
GSS
Gate-to-Source Forward Leakage
200
nA
Gate-to-Source Reverse Leakage
-200
R
G
Gate Input Resistance
1.5
f = 1MHz, open drain
Dynamic @ T
J
= 25C (unless otherwise specified)
Symbol
Parameter
Min. Typ. Max. Units
gfs
Forward Transconductance
120
S
Q
g
Total Gate Charge
120
180
nC
Q
gs
Gate-to-Source Charge
31
Q
gd
Gate-to-Drain ("Miller") Charge
44
t
d(on)
Turn-On Delay Time
24
ns
t
r
Rise Time
80
t
d(off)
Turn-Off Delay Time
55
t
f
Fall Time
50
C
iss
Input Capacitance
5150
pF
C
oss
Output Capacitance
360
C
rss
Reverse Transfer Capacitance
190
C
oss
eff. (ER) Effective Output Capacitance (Energy Related)
420
C
oss
eff. (TR) Effective Output Capacitance (Time Related)h
500
Diode Characteristics
Symbol
Parameter
Min. Typ. Max. Units
I
S
Continuous Source Current
96
c
A
(Body Diode)
I
SM
Pulsed Source Current
380
A
(Body Diode)
d
V
SD
Diode Forward Voltage
1.3
V
t
rr
Reverse Recovery Time
38
56
ns
T
J
= 25C
V
R
= 85V,
51
77
T
J
= 125C
I
F
= 58A
Q
rr
Reverse Recovery Charge
61
92
nC T
J
= 25C
di/dt = 100A/s
g
110
170
T
J
= 125C
I
RRM
Reverse Recovery Current
2.8
A
T
J
= 25C
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Conditions
V
DS
= 50V, I
D
= 58A
I
D
= 58A
V
GS
= 20V
V
GS
= -20V
MOSFET symbol
showing the
V
DS
= 80V
Conditions
V
GS
= 10V
g
V
GS
= 0V
V
DS
= 50V
= 1.0MHz
V
GS
= 0V, V
DS
= 0V to 80V
i, See Fig.11
V
GS
= 0V, V
DS
= 0V to 80V
h, See Fig. 5
T
J
= 25C, I
S
= 58A, V
GS
= 0V
g
integral reverse
p-n junction diode.
Conditions
V
GS
= 0V, I
D
= 250A
Reference to 25C, I
D
= 1mA
d
V
GS
= 10V, I
D
= 58A
g
V
DS
= V
GS
, I
D
= 150A
V
DS
= 100V, V
GS
= 0V
V
DS
= 100V, V
GS
= 0V, T
J
= 125C
I
D
= 58A
R
G
= 4.1
V
GS
= 10V
g
V
DD
= 65V
background image
IRFB4410/IRFS4410/IRFSL4410
www.irf.com
3
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance vs. Temperature
Fig 2. Typical Output Characteristics
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
0.1
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
I D
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
4.5V
60s PULSE WIDTH
Tj = 175C
VGS
TOP 15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
BOTTOM
4.5V
2
3
4
5
6
7
8
9
10
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
I D
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t
(
)
TJ = 25C
TJ = 175C
VDS = 25V
60s PULSE WIDTH
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (C)
0.5
1.0
1.5
2.0
2.5
3.0
R
D
S
(
o
n
)
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

O
n

R
e
s
i
s
t
a
n
c
e






















(
N
o
r
m
a
l
i
z
e
d
)
ID = 58A
VGS = 10V
1
10
100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
100000
C
,

C
a
p
a
c
i
t
a
n
c
e
(
p
F
)
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0
20
40
60
80
100
120
QG Total Gate Charge (nC)
0.0
2.0
4.0
6.0
8.0
10.0
12.0
V
G
S
,

G
a
t
e
-
t
o
-
S
o
u
r
c
e

V
o
l
t
a
g
e

(
V
)
VDS= 80V
VDS= 50V
VDS= 20V
ID= 58A
0.1
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
I D
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
VGS
TOP 15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
BOTTOM
4.5V
60s PULSE WIDTH
Tj = 25C
4.5V
background image
IRFB4410/IRFS4410/IRFSL4410
4
www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 10. Drain-to-Source Breakdown Voltage
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 11. Typical C
OSS
Stored Energy
Fig 9. Maximum Drain Current vs. Case Temperature
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
VSD, Source-to-Drain Voltage (V)
1
10
100
1000
I S
D
,

R
e
v
e
r
s
e

D
r
a
i
n

C
u
r
r
e
n
t

(
A
)
TJ = 25C
TJ = 175C
VGS = 0V
0
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
I D
,


D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
OPERATION IN THIS AREA
LIMITED BY RDS(on)
Tc = 25C
Tj = 175C
Single Pulse
100sec
1msec
10msec
DC
25
50
75
100
125
150
175
TC , Case Temperature (C)
0
10
20
30
40
50
60
70
80
90
100
I D
,
D
r
a
i
n

C
u
r
r
e
n
t

(
A
)
Limited By Package
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
TJ , Temperature ( C )
100
105
110
115
120
125
130
V
(
B
R
)
D
S
S
,
D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

B
r
e
a
k
d
o
w
n

V
o
l
t
a
g
e

(
V
)
0
20
40
60
80
100
120
VDS, Drain-to-Source Voltage (V)
0.0
0.5
1.0
1.5
2.0
E
n
e
r
g
y

(

J
)
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (C)
0
100
200
300
400
500
600
700
800
900
E
A
S
,
S
i
n
g
l
e

P
u
l
s
e

A
v
a
l
a
n
c
h
e

E
n
e
r
g
y

(
m
J
)
ID
TOP 6.7A
9.7A
BOTTOM 58A
background image
IRFB4410/IRFS4410/IRFSL4410
www.irf.com
5
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 14. Typical Avalanche Current vs.Pulsewidth
Fig 15. Maximum Avalanche Energy vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of T
jmax
. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asT
jmax
is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. P
D (ave)
= Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. I
av
= Allowable avalanche current.
7.
T
=
Allowable rise in junction temperature, not to exceed
T
jmax
(assumed as
25C in Figure 14, 15).
t
av =
Average time in avalanche.
D = Duty cycle in avalanche = t
av
f
Z
thJC
(D, t
av
) = Transient thermal resistance, see Figures 13)
P
D (ave)
= 1/2 ( 1.3BVI
av
) =
DT/ Z
thJC
I
av
=
2
DT/ [1.3BVZ
th
]
E
AS (AR)
= P
D (ave)
t
av
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
T
h
e
r
m
a
l

R
e
s
p
o
n
s
e

(

Z

t
h
J
C
)
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (C/W)
i (sec)
0.2736 0.000376
0.3376 0.004143
J
J
1
1
2
2
R
1
R
1
R
2
R
2
C
Ci i
/Ri
Ci=
i/Ri
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
0.1
1
10
100
1000
A
v
a
l
a
n
c
h
e

C
u
r
r
e
n
t

(
A
)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming
Tj = 25C due to
avalanche losses
0.01
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (C)
0
50
100
150
200
250
E
A
R
,

A
v
a
l
a
n
c
h
e

E
n
e
r
g
y

(
m
J
)
TOP Single Pulse
BOTTOM 1% Duty Cycle
ID = 58A