ChipFind - документация

Электронный компонент: IRFSL11N50A

Скачать:  PDF   ZIP
IRFSL11N50A
HEXFET
Power MOSFET
Third Generation HEXFETs from International Rectifier provide the designer
with the best combination of fast switching, ruggedized device design, low on-
resistance and cost-effectiveness.
S
D
G
Parameter
Max.
Units
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
11
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ 10V
7.0
A
I
DM
Pulsed Drain Current
44
P
D
@T
C
= 25C
Power Dissipation
190
W
Linear Derating Factor
1.3
W/C
V
GS
Gate-to-Source Voltage
30
V
E
AS
Single Pulse Avalanche Energy
390
mJ
I
AR
Avalanche Current
11
A
E
AR
Repetitive Avalanche Energy
19
mJ
dv/dt
Peak Diode Recovery dv/dt
4.1
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
C
Absolute Maximum Ratings
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
0.75
C
R
JA
Junction-to-Ambient
40
Thermal Resistance
V
DSS
= 500V
R
DS(on)
= 0.55
I
D
= 11A
l
Dynamic dv/dt Rating
l
Repetitive Avalanche Rated
l
Fast Switching
l
Ease of Paraleling
l
Simple Drive Requirements
Description
9/2/99
www.irf.com
1

T O -2 6 2
PD- 91847A
IRFSL11N50A
2
www.irf.com
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
500
V
V
GS
= 0V, I
D
= 250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
0.57
V/C
Reference to 25C, I
D
= 1mA
R
DS(on)
Static Drain-to-Source On-Resistance
0.55
V
GS
= 10V, I
D
= 6.6A
V
GS(th)
Gate Threshold Voltage
2.0
4.0
V
V
DS
= V
GS
, I
D
= 250A
g
fs
Forward Transconductance
6.0
S
V
DS
= 50V, I
D
= 6.6A
25
A
V
DS
= 500V, V
GS
= 0V
250
V
DS
= 400V, V
GS
= 0V, T
J
= 150C
Gate-to-Source Forward Leakage
100
V
GS
= 30V
Gate-to-Source Reverse Leakage
-100
nA
V
GS
= -30V
Q
g
Total Gate Charge
51
I
D
= 11A
Q
gs
Gate-to-Source Charge
12
nC
V
DS
= 400V
Q
gd
Gate-to-Drain ("Miller") Charge
23
V
GS
= 10V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time
14
V
DD
= 250V
t
r
Rise Time
34
I
D
= 11A
t
d(off)
Turn-Off Delay Time
32
R
G
= 9.1
t
f
Fall Time
27
R
D
= 22
,See Fig. 10
Between lead,
6mm (0.25in.)
from package
and center of die contact
C
iss
Input Capacitance
1426
V
GS
= 0V
C
oss
Output Capacitance
208
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
9.6
pF
= 1.0MHz, See Fig. 5
C
oss
Output Capacitance
1954
V
GS
= 0V, V
DS
= 1.0V, = 1.0MHz
C
oss
Output Capacitance
53
V
GS
= 0V, V
DS
= 400V, = 1.0MHz
C
oss
eff.
Effective Output Capacitance
110
V
GS
= 0V, V
DS
= 0V to 400V
nH
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
L
D
Internal Drain Inductance
L
S
Internal Source Inductance
S
D
G
I
GSS
ns
4.5
7.5
I
DSS
Drain-to-Source Leakage Current
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
I
SD
11A, di/dt
185A/s, V
DD
V
(BR)DSS
,
T
J
175C
Notes:
Starting T
J
= 25C, L = 6.4mH
R
G
= 25
, I
AS
= 11A. (See Figure 12)
Pulse width
300s; duty cycle
2%.
S
D
G
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
1.5
V
T
J
= 25C, I
S
= 11A, V
GS
= 0V
t
rr
Reverse Recovery Time
530
790
ns
T
J
= 25C, I
F
= 11A
Q
rr
Reverse RecoveryCharge
3.4
5.1
C
di/dt = 100A/s
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Source-Drain Ratings and Characteristics
11
44
A
C
oss
eff. is a fixed capacitance that gives the same charging time
as C
oss
while V
DS
is rising from 0 to 80% V
DSS
IRFSL11N50A
www.irf.com
3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
0.1
1
10
100
0.1
1
10
100
20s PULSE WIDTH
T = 25 C
J
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
1
10
100
1
10
100
20s PULSE WIDTH
T = 175 C
J
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
-60 -40 -20
0
20 40 60 80 100 120 140 160 180
0.0
0.5
1.0
1.5
2.0
2.5
3.0
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
V
=
I =
GS
D
10V
11A
0.1
1
10
100
4.0
5.0
6.0
7.0
8.0
V = 50V
20s PULSE WIDTH
DS
V , Gate-to-Source Voltage (V)
I , Drain-to-Source Current (A)
GS
D
T = 25 C
J
T = 175 C
J
IRFSL11N50A
4
www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
1
1 0
1 0 0
1 0 0 0
1 0 0 0 0
1 0 0 0 0 0
1
1 0
1 0 0
1 0 0 0
C E
C
,
C
a
p
a
c
i
t
anc
e (
p
F
)
V , C o lle c to r-to -E m itte r V o lta g e (V )
A
V = 0 V , f = 1 M H z
C = C + C , C S H O R T E D
C = C
C = C + C
G S
is s g s g d d s
rs s g d
o s s d s g d
C
is s
C
os s
C
rs s
0.1
1
10
100
0.0
0.4
0.8
1.2
1.6
V ,Source-to-Drain Voltage (V)
I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 25 C
J
T = 175 C
J
0.1
1
10
100
1000
10
100
1000
10000
OPERATION IN THIS AREA LIMITED
BY R
DS(on)
Single Pulse
T
T
= 175 C
= 25 C
J
C
V , Drain-to-Source Voltage (V)
I , Drain Current (A)
I , Drain Current (A)
DS
D
10us
100us
1ms
10ms
0
10
20
30
40
50
0
4
8
12
16
20
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
FOR TEST CIRCUIT
SEE FIGURE
I =
D
13
11A
V
= 100V
DS
V
= 250V
DS
V
= 400V
DS
IRFSL11N50A
www.irf.com
5
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
V
DS
Pulse Width
1
s
Duty Factor
0.1 %
R
D
V
GS
R
G
D.U.T.
10V
+
-
V
DD
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
25
50
75
100
125
150
0
2
4
6
8
10
12
T , Case Temperature
( C)
I , Drain Current (A)
C
D
0.01
0.1
1
0.00001
0.0001
0.001
0.01
0.1
1
Notes:
1. Duty factor D =
t / t
2. Peak T = P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response
(Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)