ChipFind - документация

Электронный компонент: IRFU024N

Скачать:  PDF   ZIP
IRFR/U024N
PRELIMINARY
HEXFET
Power MOSFET
S
D
G
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
3.3
R
JA
Case-to-Ambient (PCB mount)**
50
C/W
R
JA
Junction-to-Ambient
110
Thermal Resistance
V
DSS
= 55V
R
DS(on)
= 0.075
I
D
= 17A
Description
www.irf.com
1
D -P ak
T O -2 52 A A
I-P ak
T O -25 1 A A
l
Ultra Low On-Resistance
l
Surface Mount (IRFR024N)
l
Straight Lead (IRFU024N)
l
Advanced Process Technology
l
Fast Switching
l
Fully Avalanche Rated
Fifth Generation HEXFETs from International Rectifier utilize advanced
processing techniques to achieve the lowest possible on-resistance per
silicon area. This benefit, combined with the fast switching speed and
ruggedized device design that HEXFET Power MOSFETs are well known for,
provides the designer with an extremely efficient device for use in a wide
variety of applications.
The D-PAK is designed for surface mounting using vapor phase, infrared, or
wave soldering techniques. The straight lead version (IRFU series) is for
through-hole mounting applications. Power dissipation levels up to 1.5 watts
are possible in typical surface mount applications.
** When mounted on 1" square PCB (FR-4 or G-10 Material ) .
For recommended footprint and soldering techniques refer to application note #AN-994
Parameter
Max.
Units
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
17
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ 10V
12
A
I
DM
Pulsed Drain Current
68
P
D
@T
C
= 25C
Power Dissipation
45
W
Linear Derating Factor
0.30
W/C
V
GS
Gate-to-Source Voltage
20
V
E
AS
Single Pulse Avalanche Energy
71
mJ
I
AR
Avalanche Current
10
A
E
AR
Repetitive Avalanche Energy
4.5
mJ
dv/dt
Peak Diode Recovery dv/dt
5.0
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
C
Absolute Maximum Ratings
PD- 9.1336A
IRFR/U024N
2
www.irf.com
S
D
G
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
1.3
V
T
J
= 25C, I
S
= 10A, V
GS
= 0V
t
rr
Reverse Recovery Time
56
83
ns
T
J
= 25C, I
F
= 10A
Q
rr
Reverse RecoveryCharge
120
180
nC
di/dt = 100A/s
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Source-Drain Ratings and Characteristics
17
68
A
V
DD
= 25V, starting T
J
= 25C, L = 1.0mH
R
G
= 25
, I
AS
= 10A. (See Figure 12)
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
Pulse width
300s; duty cycle
2%.
Uses IRFZ24N data and test conditions.
I
SD
10A, di/dt
280A/s, V
DD
V
(BR)DSS
,
T
J
175C
Notes:
This is applied for I-PAK, L
S
of D-PAK is measured between
lead and center of die contact.
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
55
V
V
GS
= 0V, I
D
= 250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
0.052
V/C
Reference to 25C, I
D
= 1mA
R
DS(on)
Static Drain-to-Source On-Resistance
0.075
V
GS
= 10V, I
D
= 10A
V
GS(th)
Gate Threshold Voltage
2.0
4.0
V
V
DS
= V
GS
, I
D
= 250A
g
fs
Forward Transconductance
4.5
S
V
DS
= 25V, I
D
= 10A
25
A
V
DS
= 55V, V
GS
= 0V
250
V
DS
= 44V, V
GS
= 0V, T
J
= 150C
Gate-to-Source Forward Leakage
100
V
GS
= 20V
Gate-to-Source Reverse Leakage
-100
nA
V
GS
= -20V
Q
g
Total Gate Charge
20
I
D
= 10A
Q
gs
Gate-to-Source Charge
5.3
nC
V
DS
= 44V
Q
gd
Gate-to-Drain ("Miller") Charge
7.6
V
GS
= 10V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time
4.9
V
DD
= 28V
t
r
Rise Time
34
I
D
= 10A
t
d(off)
Turn-Off Delay Time
19
R
G
= 24
t
f
Fall Time
27
R
D
= 2.6
, See Fig. 10
Between lead,
6mm (0.25in.)
from package
and center of die contact
C
iss
Input Capacitance
370
V
GS
= 0V
C
oss
Output Capacitance
140
pF
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
65
= 1.0MHz, See Fig. 5
nH
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
L
D
Internal Drain Inductance
L
S
Internal Source Inductance
S
D
G
I
GSS
ns
4.5
7.5
I
DSS
Drain-to-Source Leakage Current
IRFR/U024N
www.irf.com
3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
1
10
100
0.1
1
10
10 0
I , D
r
a
i
n
-
to
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(A
)
D
V , D ra in-to-S o urc e V o lta ge (V )
D S
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
2 0 s P U L S E W ID TH
T = 2 5 C
C
A
4 .5 V
1
1 0
1 00
0.1
1
10
100
4 .5 V
I , D
r
a
i
n
-
to
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(A
)
D
V , D ra in-to-S o urc e V o lta ge (V )
D S
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
2 0 s P U L S E W ID TH
T = 1 7 5 C
C
A
1
1 0
1 0 0
4
5
6
7
8
9
1 0
T = 2 5 C
J
G S
V , G a te -to -S o u rc e V o lta g e (V )
D
I

,

D
r
ai
n-
t
o
-
S
ou
r
c
e C
u
r
r
e
n
t
(
A
)
T = 1 7 5 C
J
A
V = 2 5 V
2 0 s P U L S E W ID T H
D S
0.0
0.5
1.0
1.5
2.0
2.5
3.0
-60
-40
-20
0
2 0
4 0
6 0
8 0
1 0 0 1 2 0 1 4 0 1 6 0 1 8 0
J
T , J unc tion T em perature (C )
R
, D
r
a
i
n
-
to
-S
o
u
r
c
e
O
n
R
e
s
i
s
t
a
n
c
e
DS
(
o
n
)
(N
o
r
m
a
l
i
z
e
d
)
V = 1 0 V
G S
A
I = 1 7 A
D
IRFR/U024N
4
www.irf.com
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
Fig 8. Maximum Safe Operating Area
0
1 00
2 00
3 00
4 00
5 00
6 00
7 00
1
1 0
100
C
,
C
apaci
t
a
n
c
e
(
p
F
)
D S
V , D rain-to -S ourc e V oltage (V )
A
V = 0 V , f = 1 M H z
C = C + C , C S H O R TE D
C = C
C = C + C
G S
is s g s g d d s
rs s g d
o ss d s gd
C
is s
C
o s s
C
rs s
0
4
8
12
16
20
0
4
8
1 2
16
2 0
Q , Tota l G ate C h arg e (n C )
G
V
, G
a
te
-
t
o
-
S
o
u
r
c
e
V
o
lta
g
e
(
V
)
GS
A
F O R TE S T C IR C U IT
S E E F IG U R E 1 3
V = 4 4 V
V = 2 8 V
I = 1 0 A
D S
D S
D
1
1 0
1 0 0
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
T = 2 5 C
J
V = 0 V
G S
V , S o urc e-to -D rain V o lta ge (V )
I
,
R
e
v
e
r
s
e D
r
ai
n C
u
r
r
ent
(
A
)
S D
SD
A
T = 1 7 5 C
J
1
1 0
10 0
1 00 0
1
1 0
100
V , D ra in-to-S o urc e V o lta ge (V )
D S
I
,
D
r
ai
n C
u
r
r
e
nt
(
A
)
O P E R A T IO N IN T H IS A R E A L IM ITE D
B Y R
D
D S (on)
1 0 s
1 0 0 s
1 m s
1 0m s
A
T = 2 5 C
T = 1 7 5 C
S in g le P u ls e
C
J
IRFR/U024N
www.irf.com
5
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
V
DS
Pulse Width
1
s
Duty Factor
0.1 %
R
D
V
GS
R
G
D.U.T.
4.5V
+
-
V
DD
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
0.01
0.1
1
10
0.00001
0.0001
0.001
0.01
0.1
1
t , R e c ta n g u la r P u ls e D u ra tio n (se c )
1
th
J
C
D = 0.5 0
0 .01
0 .02
0 .0 5
0 .1 0
0 .2 0
S IN G L E P U L S E
(T H E R M A L R E S P O N S E )
A
T
h
e
r
m
a
l
R
e
s
p
o
n
s
e

(
Z
)
P
t
2
1
t
D M
N otes :
1 . D uty f ac t or D = t / t
2 . P ea k T = P x Z + T
1
2
J
D M
th J C
C
0
4
8
1 2
1 6
2 0
2 5
5 0
7 5
1 0 0
1 2 5
1 5 0
1 7 5
C
I
,
D
r
ai
n C
u
r
r
ent
(
A
m
p
s)
D
T , C as e T em pe rature (C )
A