ChipFind - документация

Электронный компонент: IRFZ24NL

Скачать:  PDF   ZIP
IRFZ24NS/L
HEXFET
Power MOSFET
PD - 9.1355B
l
Advanced Process Technology
l
Surface Mount (IRFZ24NS)
l
Low-profile through-hole (IRFZ24NL)
l
175C Operating Temperature
l
Fast Switching
l
Fully Avalanche Rated
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
3.3
R
JA
Junction-to-Ambient ( PCB Mounted,steady-state)**
40
Thermal Resistance
C/W
Parameter
Max.
Units
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
17
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ 10V
12
A
I
DM
Pulsed Drain Current
68
P
D
@T
A
= 25C
Power Dissipation
3.8
W
P
D
@T
C
= 25C
Power Dissipation
45
W
Linear Derating Factor
0.30
W/C
V
GS
Gate-to-Source Voltage
20
V
E
AS
Single Pulse Avalanche Energy
71
mJ
I
AR
Avalanche Current
10
A
E
AR
Repetitive Avalanche Energy
4.5
mJ
dv/dt
Peak Diode Recovery dv/dt
6.8
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
C
Absolute Maximum Ratings
Fifth Generation HEXFETs from International Rectifier
utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This
benefit, combined with the fast switching speed and
ruggedized device design that HEXFET Power MOSFETs
are well known for, provides the designer with an extremely
efficient and reliable device for use in a wide variety of
applications.
The D
2
Pak is a surface mount power package capable of
accommodating die sizes up to HEX-4. It provides the
highest power capability and the lowest possible on-
resistance in any existing surface mount package. The
D
2
Pak is suitable for high current applications because of
its low internal connection resistance and can dissipate
up to 2.0W in a typical surface mount application.
The through-hole version (IRFZ24NL) is available for low-
profile applications.
Description
V
DSS
= 55V
R
DS(on)
= 0.07
I
D
= 17A
2
D P a k

T O - 2 6 2
S
D
G
9/22/97
IRFZ24NS/L
Starting T
J
= 25C, L =1.0mH
R
G
= 25
, I
AS
= 10A. (See Figure 12)
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
Notes:
** When mounted on 1" square PCB (FR-4 or G-10 Material ).
For recommended footprint and soldering techniques refer to application note #AN-994.
I
SD
10A, di/dt
280A/s, V
DD
V
(BR)DSS
,
T
J
175C
Pulse width
280s; duty cycle
2%.
Uses IRFZ24N data and test conditions
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
1.3
V
T
J
= 25C, I
S
= 10A, V
GS
= 0V
t
rr
Reverse Recovery Time
56
83
ns
T
J
= 25C, I
F
= 10A
Q
rr
Reverse Recovery Charge
120
180
nC
di/dt = 100A/s
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Source-Drain Ratings and Characteristics
A
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
55
V
V
GS
= 0V, I
D
= 250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
0.052
V/C
Reference to 25C, I
D
=1mA
R
DS(on)
Static Drain-to-Source On-Resistance
0.07
V
GS
=10V, I
D
= 10A
V
GS(th)
Gate Threshold Voltage
2.0
4.0
V
V
DS
= V
GS
, I
D
= 250A
g
fs
Forward Transconductance
4.5
S
V
DS
= 25V, I
D
= 10A
25
A
V
DS
= 55V, V
GS
= 0V
250
V
DS
= 44V, V
GS
= 0V, T
J
= 150C
Gate-to-Source Forward Leakage
100
V
GS
= 20V
Gate-to-Source Reverse Leakage
-100
nA
V
GS
= -20V
Q
g
Total Gate Charge
20
I
D
= 10A
Q
gs
Gate-to-Source Charge
5.3
nC
V
DS
= 44V
Q
gd
Gate-to-Drain ("Miller") Charge
7.6
V
GS
= 10V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time
4.9
V
DD
= 28V
t
r
Rise Time
34
I
D
= 10A
t
d(off)
Turn-Off Delay Time
19
R
G
= 24
t
f
Fall Time
27
R
D
= 2.6
,
See Fig. 10
Between lead,
and center of die contact
C
iss
Input Capacitance
370
V
GS
= 0V
C
oss
Output Capacitance
140
pF
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
65
= 1.0MHz, See Fig. 5
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
I
GSS
ns
I
DSS
Drain-to-Source Leakage Current
nH
7.5
L
S
Internal Source Inductance
17
68
S
D
G
IRFZ24NS/L
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
1
1 0
1 0 0
0 . 1
1
1 0
1 0 0
I
,

D
r
a
i
n-
t
o
-
S
ou
r
c
e

C
u
r
r
ent
(
A
)
D
V , D ra in-to-S ou rce V o lta ge (V )
D S
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTT OM 4.5V
2 0 s PU LSE W ID TH
T = 2 5C
C
A
4 .5V
1
1 0
1 0 0
0 . 1
1
1 0
1 0 0
4 .5V
I
,

D
r
a
i
n-
t
o
-
S
ou
r
c
e

C
u
r
r
ent
(
A
)
D
V , Dra in -to-So urce V oltag e (V)
D S
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTT OM 4.5V
20 s P UL SE W I DTH
T = 17 5C
C
A
1
1 0
1 0 0
4
5
6
7
8
9
1 0
T = 2 5 C
J
G S
V , Ga te -to -S o u rce V o lta g e (V )
D
I
, D
r
a
i
n
-
to
-
S
o
u
r
c
e
C
u
r
r
e
n
t (
A
)
T = 1 7 5 C
J
A
V = 2 5 V
2 0 s P U L SE W ID TH
DS
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
- 6 0
- 4 0
- 2 0
0
2 0
4 0
6 0
8 0
1 0 0 1 2 0 1 4 0 1 6 0 1 8 0
J
T , Ju nctio n T emp eratu re (C)
R
,
D
r
a
i
n
-
to
-
S
o
u
r
c
e
O
n
R
e
s
i
s
t
a
n
c
e
D
S
(
on)
(
N
o
r
m
a
l
i
z
ed)
V = 10 V
G S
A
I = 17 A
D
T
J
= 25C
T
J
= 175C
IRFZ24NS/L
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 8. Maximum Safe Operating Area
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
0
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
1
1 0
1 0 0
C
,
C
a
pac
i
t
anc
e (
p
F
)
D S
V , D rain-to -S ou rce Volta ge (V )
A
V = 0 V, f = 1M H z
C = C + C , C SH OR TE D
C = C
C = C + C
G S
is s gs gd ds
rss gd
oss d s gd
C
i s s
C
o s s
C
rs s
1
1 0
1 0 0
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4
1 . 6
1 . 8
2 . 0
T = 25 C
J
V = 0 V
G S
V , S o urce-to -Drain Vo lta ge (V )
I
, R
e
v
e
r
s
e
D
r
a
i
n
C
u
r
r
e
n
t
(
A
)
S D
SD
A
T = 1 75 C
J
1
1 0
1 0 0
1 0 0 0
1
1 0
1 0 0
V , Dra in -to-So urce Vo ltag e (V)
D S
I
,
D
r
ai
n C
u
r
r
en
t

(
A
)
OPE R ATIO N IN TH IS A RE A LI MI TE D
BY R
D
D S(o n)
10s
100 s
1m s
10m s
A
T = 25 C
T = 17 5C
S ing le Pulse
C
J
0
4
8
1 2
1 6
2 0
0
4
8
1 2
1 6
2 0
Q , To tal Ga te Ch arg e (nC )
G
V

,
G
a
te
-
t
o
-
S
o
u
r
c
e
V
o
l
t
a
g
e

(
V
)
GS
A
FO R TES T C IR CU I T
SEE FIG U R E 13
V = 4 4V
V = 2 8V
I = 1 0A
DS
DS
D
IRFZ24NS/L
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
V
DS
Pulse Width
1
s
Duty Factor
0.1 %
R
D
V
GS
R
G
D.U.T.
10V
+
-
V
DD
25
50
75
100
125
150
175
0
4
8
12
16
20
T , Case Temperature
( C)
I , Drain Current (A)
C
D
0.01
0.1
1
10
0.00001
0.0001
0.001
0.01
0.1
1
Notes:
1. Duty factor D =
t / t
2. Peak T
= P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response
(Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)