ChipFind - документация

Электронный компонент: IRG4BC20FD-S

Скачать:  PDF   ZIP
www.docs.chipfind.ru
background image
Parameter
Max.
Units
V
CES
Collector-to-Emitter Voltage
600
V
I
C
@ T
C
= 25C
Continuous Collector Current
16
I
C
@ T
C
= 100C
Continuous Collector Current
9.0
I
CM
Pulsed Collector Current
Q
64
A
I
LM
Clamped Inductive Load Current
R
64
I
F
@ T
C
= 100C
Diode Continuous Forward Current
8.0
I
FM
Diode Maximum Forward Current
60
V
GE
Gate-to-Emitter Voltage
20
V
P
D
@ T
C
= 25C
Maximum Power Dissipation
60
P
D
@ T
C
= 100C
Maximum Power Dissipation
24
T
J
Operating Junction and
-55 to +150
T
STG
Storage Temperature Range
C
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case - IGBT
2.1
R
JC
Junction-to-Case - Diode
3.5
C/W
R
JA
Junction-to-Ambient ( PCB Mounted,steady-state)*
80
Wt
Weight
1.44
g (oz)
IRG4BC20FD-S
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
Features
Features
Features
Features
Features
E
G
n-c ha nn el
C
V
CES
= 600V
V
CE(on) typ.
= 1.66V
@V
GE
= 15V, I
C
= 9.0A
Thermal Resistance
Fast CoPack IGBT
4/24/2000
Absolute Maximum Ratings
Fast: Optimized for medium operating
frequencies ( 1-5 kHz in hard switching, >20
kHz in resonant mode).
Generation 4 IGBT design provides tighter
parameter distribution and higher efficiency than
Generation 3
IGBT co-packaged with HEXFRED
TM
ultrafast,
ultra-soft-recovery anti-parallel diodes for use
in bridge configurations
Industry standard D
2
Pak package
Benefits
Generation 4 IGBTs offer highest efficiencies
available
IGBTs optimized for specific application conditions
HEXFRED diodes optimized for performance with
IGBTs . Minimized recovery characteristics require
less/no snubbing
Designed to be a "drop-in" replacement for equivalent
industry-standard Generation 3 IR IGBTs
W
2
D P a k
* When mounted on 1" square PCB (FR-4 or G-10 Material ). For recommended footprint and soldering techniques
refer to application note #AN-994.
www.irf.com
1
PD -91783A
background image
IRG4BC20FD-S
2
www.irf.com
Parameter
Min. Typ. Max. Units
Conditions
Q
g
Total Gate Charge (turn-on)
--
27
40
I
C
= 9.0A
Qge
Gate - Emitter Charge (turn-on)
--
4.2
6.2
nC
V
CC
= 400V
See Fig. 8
Q
gc
Gate - Collector Charge (turn-on)
--
9.9
15
V
GE
= 15V
t
d(on)
Turn-On Delay Time
--
43
--
T
J
= 25C
t
r
Rise Time
--
20
--
ns
I
C
= 9.0A, V
CC
= 480V
t
d(off)
Turn-Off Delay Time
--
240
360
V
GE
= 15V, R
G
= 50
t
f
Fall Time
--
150
220
Energy losses include "tail" and
E
on
Turn-On Switching Loss
--
0.25
--
diode reverse recovery.
E
off
Turn-Off Switching Loss
--
0.64
--
mJ
See Fig. 9, 10, 18
E
ts
Total Switching Loss
--
0.89
1.3
t
d(on)
Turn-On Delay Time
--
41
--
T
J
= 150C, See Fig. 10, 11, 18
t
r
Rise Time
--
22
--
ns
I
C
= 9.0A, V
CC
= 480V
t
d(off)
Turn-Off Delay Time
--
320
--
V
GE
= 15V, R
G
= 50
t
f
Fall Time
--
290
--
Energy losses include "tail" and
E
ts
Total Switching Loss
--
1.35
--
mJ
diode reverse recovery.
L
E
Internal Emitter Inductance
--
7.5
--
nH
Measured 5mm from package
C
ies
Input Capacitance
--
540
--
V
GE
= 0V
C
oes
Output Capacitance
--
37
--
pF
V
CC
= 30V
See Fig. 7
C
res
Reverse Transfer Capacitance
--
7.0
--
= 1.0MHz
t
rr
Diode Reverse Recovery Time
--
37
55
ns
T
J
= 25C See Fig.
--
55
90
T
J
= 125C 14 I
F
= 8.0A
I
rr
Diode Peak Reverse Recovery Current
--
3.5
5.0
A
T
J
= 25C See Fig.
--
4.5
8.0
T
J
= 125C 15 V
R
= 200V
Q
r r
Diode Reverse Recovery Charge
--
65
138
nC
T
J
= 25C See Fig.
--
124
360
T
J
= 125C 16 di/dt = 200A/s
di
(rec)M
/dt
Diode Peak Rate of Fall of Recovery
--
240
--
A/s
T
J
= 25C See Fig.
During t
b
--
210
--
T
J
= 125C 17
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)CES
Collector-to-Emitter Breakdown Voltage
S
600
--
--
V
V
GE
= 0V, I
C
= 250A
V
(BR)CES
/
T
J
Temperature Coeff. of Breakdown Voltage
--
0.72
--
V/C
V
GE
= 0V, I
C
= 1.0mA
V
CE(on)
Collector-to-Emitter Saturation Voltage
--
1.66
2.0
I
C
= 9.0A
V
GE
= 15V
--
2.06
--
V
I
C
= 16A
See Fig. 2, 5
--
1.76
--
I
C
= 9.0A, T
J
= 150C
V
GE(th)
Gate Threshold Voltage
3.0
--
6.0
V
CE
= V
GE
, I
C
= 250A
V
GE(th)
/
T
J
Temperature Coeff. of Threshold Voltage
--
-11
--
mV/C V
CE
= V
GE
, I
C
= 250A
g
fe
Forward Transconductance
T
2.9
5.1
--
S
V
CE
= 100V, I
C
= 9.0A
I
CES
Zero Gate Voltage Collector Current
--
--
250
A
V
GE
= 0V, V
CE
= 600V
--
--
1700
V
GE
= 0V, V
CE
= 600V, T
J
= 150C
V
FM
Diode Forward Voltage Drop
--
1.4
1.7
V
I
C
= 8.0A
See Fig. 13
--
1.3
1.6
I
C
= 8.0A, T
J
= 150C
I
GES
Gate-to-Emitter Leakage Current
--
--
100
nA
V
GE
= 20V
Switching Characteristics @ T
J
= 25C (unless otherwise specified)
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
background image
IRG4BC20FD-S
www.irf.com
3
0.1
1
10
100
0.0
1.0
2.0
3.0
f, Frequency (KHz)
LOAD CURRENT (A)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = I
RMS
of fundamental)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
1
10
100
1
10
V , Collector-to-Emitter Voltage (V)
I , Collector-to-Emitter Current (A)
CE
C
V = 15V
20s PULSE WIDTH
GE
T = 25 C
J
o
T = 150 C
J
o
1
10
100
5
6
7
8
9
10
11
12
13
14
V , Gate-to-Emitter Voltage (V)
I , Collector-to-Emitter Current (A)
GE
C
V = 50V
5s PULSE WIDTH
CC
T = 25 C
J
o
T = 150 C
J
o
6 0% of rate d
volta ge
I
Id e a l d io d e s
S q u a re w a v e :
For both:
D uty cy cle : 5 0 %
T = 12 5 C
T = 90 C
G a te d rive a s sp e cifie d
s in k
J
P ow e r Dis sip ation = W
1.75
55C
Mounted on PCB
background image
IRG4BC20FD-S
4
www.irf.com
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Fig. 4 - Maximum Collector Current vs. Case
Temperature
-60 -40 -20
0
20
40
60
80 100 120 140 160
1.0
2.0
3.0
T , Junction Temperature ( C)
V , Collector-to-Emitter Voltage(V)
J
CE
V = 15V
80 us PULSE WIDTH
GE
I = A
4.5
C
I = A
9
C
I = A
18
C
25
50
75
100
125
150
0
4
8
12
16
T , Case Temperature ( C)
Maximum DC Collector Current(A)
C
9.0 A
0.01
0.1
1
10
0.00001
0.0001
0.001
0.01
0.1
1
Notes:
1. Duty factor D = t / t
2. Peak T = P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response (Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
0.50
SINGLE PULSE
(THERMAL RESPONSE)
background image
IRG4BC20FD-S
www.irf.com
5
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
0
10
20
30
40
50
0.78
0.80
0.82
0.84
0.86
0.88
0.90
R , Gate Resistance (Ohm)
Total Switching Losses (mJ)
G
V = 480V
V = 15V
T = 25 C
I = 9.0A
CC
GE
J
C
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
-60 -40 -20
0
20
40
60
80 100 120 140 160
0.1
1
10
T , Junction Temperature ( C )
Total Switching Losses (mJ)
J
R = 50Ohm
V = 15V
V = 480V
G
GE
CC
I = A
18
C
I = A
9
C
I = A
4.5
C
0
5
10
15
20
25
30
0
4
8
12
16
20
Q , Total Gate Charge (nC)
V , Gate-to-Emitter Voltage (V)
G
GE
V
= 400V
I
= 9.0A
CC
C
1
10
100
0
200
400
600
800
1000
V , Collector-to-Emitter Voltage (V)
C, Capacitance (pF)
CE
V
C
C
C
=
=
=
=
0V,
C
C
C
f = 1MHz
+ C
+ C
C SHORTED
GE
ies
ge
gc ,
ce
res
gc
oes
ce
gc
Cies
Coes
Cres
9.0 A