ChipFind - документация

Электронный компонент: IRG4BC30U-S

Скачать:  PDF   ZIP
IRG4BC30U-S
UltraFast Speed IGBT
INSULATED GATE BIPOLAR TRANSISTOR
E
C
G
n-channel
V
CES
= 600V
V
CE(on) typ.
= 1.95V
@V
GE
= 15V, I
C
= 12A
Features
UltraFast: Optimized for high operating
frequencies 8-40 kHz in hard switching, >200
kHz in resonant mode
Generation 4 IGBT design provides tighter
parameter distribution and higher efficiency than
Generation 3
Industry standard D
2
Pak package
Generation 4 IGBT's offer highest efficiency available
IGBT's optimized for specified application conditions
Designed to be a "drop-in" replacement for equivalent
industry-standard Generation 3 IR IGBT's
Benefits
www.irf.com
1
*
When mounted on 1" square PCB (FR-4 or G-10 Material ). For recommended footprint and soldering
techniques refer to application note #AN-994.
2
D P a k
PD - 91803
Parameter
Max.
Units
V
CES
Collector-to-Emitter Breakdown Voltage
600
V
I
C
@ T
C
= 25C
Continuous Collector Current
23
I
C
@ T
C
= 100C
Continuous Collector Current
12
A
I
CM
Pulsed Collector Current
92
I
LM
Clamped Inductive Load Current
92
V
GE
Gate-to-Emitter Voltage
20
V
E
ARV
Reverse Voltage Avalanche Energy
10
mJ
P
D
@ T
C
= 25C
Maximum Power Dissipation
100
P
D
@ T
C
= 100C
Maximum Power Dissipation
42
T
J
Operating Junction and
-55 to + 150
T
STG
Storage Temperature Range
Absolute Maximum Ratings
W
Parameter
Typ.
Max.
Units
R
q
JC
Junction-to-Case
1.2
C/W
R
q
JA
Junction-to-Ambient, ( PCB Mounted,steady-state)*
40
Thermal Resistance
IRG4BC30U-S
2
www.irf.com
Parameter
Min. Typ. Max. Units
Conditions
Q
g
Total Gate Charge (turn-on)
--
50
75
I
C
= 12A
Q
ge
Gate - Emitter Charge (turn-on)
--
8.1
12
nC
V
CC
= 400V
See Fig.8
Q
gc
Gate - Collector Charge (turn-on)
--
18
27
V
GE
= 15V
t
d(on)
Turn-On Delay Time
--
17
--
t
r
Rise Time
--
9.6
--
T
J
= 25C
t
d(off)
Turn-Off Delay Time
--
78
120
I
C
= 12A, V
CC
= 480V
t
f
Fall Time
--
97
150
V
GE
= 15V, R
G
= 23
W
E
on
Turn-On Switching Loss
--
0.16
--
Energy losses include "tail"
E
off
Turn-Off Switching Loss
--
0.20
--
mJ
See Fig. 10, 11, 13, 14
E
ts
Total Switching Loss
--
0.36 0.50
t
d(on)
Turn-On Delay Time
--
20
--
T
J
= 150C,
t
r
Rise Time
--
13
--
I
C
= 12A, V
CC
= 480V
t
d(off)
Turn-Off Delay Time
--
180
--
V
GE
= 15V, R
G
= 23
W
t
f
Fall Time
--
140
--
Energy losses include "tail"
E
ts
Total Switching Loss
--
0.73
--
mJ
See Fig. 13, 14
L
E
Internal Source Inductance
--
7.5
--
nH
Measured 5mm from package
C
ies
Input Capacitance
--
1100
--
V
GE
= 0V
C
oes
Output Capacitance
--
73
--
pF
V
CC
= 30V
See Fig.7
C
res
Reverse Transfer Capacitance
--
14
--
= 1.0MHz
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)CES
Collector-to-Emitter Breakdown Voltage
600
--
--
V
V
GE
= 0V, I
C
= 250A
V
(BR)ECS
Emitter-to-Collector Breakdown Voltage
18
--
--
V
V
GE
= 0V, I
C
= 1.0A
D
V
(BR)CES
/
D
T
J
Temperature Coeff. of Breakdown Voltage
--
0.63
--
V/C
V
GE
= 0V, I
C
= 1.0mA
--
1.95
2.1
I
C
= 12A V
GE
= 15V
V
CE(ON)
Collector-to-Emitter Saturation Voltage
--
2.52
--
I
C
= 23A
See Fig.2, 5
--
2.09
--
I
C
= 12A , T
J
= 150C
V
GE(th)
Gate Threshold Voltage
3.0
--
6.0
V
CE
= V
GE
, I
C
= 250A
D
V
GE(th)
/
D
T
J
Temperature Coeff. of Threshold Voltage
--
-13
--
mV/C V
CE
= V
GE
, I
C
= 250A
g
fe
Forward Transconductance
3.1
8.6
--
S
V
CE
= 100V, I
C
= 12A
--
--
250
V
GE
= 0V, V
CE
= 600V
--
--
2.0
V
GE
= 0V, V
CE
= 10V, T
J
= 25C
--
--
1000
V
GE
= 0V, V
CE
= 600V, T
J
= 150C
I
GES
Gate-to-Emitter Leakage Current
--
--
100
nA
V
GE
= 20V
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
I
CES
Zero Gate Voltage Collector Current
V
A
Switching Characteristics @ T
J
= 25C (unless otherwise specified)
ns
ns
Pulse width
80s; duty factor
0.1%.
Pulse width 5.0s, single shot.
Notes:
Repetitive rating; V
GE
= 20V, pulse width limited by
max. junction temperature. ( See fig. 13b )
V
CC
= 80%(V
CES
), V
GE
= 20V, L = 10H, R
G
= 23
W
,
(See fig. 13a)
Repetitive rating; pulse width limited by maximum
junction temperature.
IRG4BC30U-S
www.irf.com
3
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=I
RMS
of fundamental; for triangular wave, I=I
PK
)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
0.1
1
1 0
1 0 0
0.1
1
1 0
C E
C
I
,
C
o
ll
e
c
t
o
r-t
o
-
E
m
it
t
e
r C
u
rre
n
t

(
A
)
V , C o lle cto r-to -E m itte r V o lta g e (V )
T = 1 5 0 C
T = 2 5 C
J
J
V = 1 5 V
2 0 s P U LS E W ID T H
G E
A
0.1
1
1 0
1 0 0
5
6
7
8
9
1 0
1 1
1 2
C
I
,
C
o
ll
e
c
t
o
r-t
o
-
E
m
it
t
e
r C
u
rre
n
t

(
A
)
G E
T = 2 5 C
T = 1 5 0 C
J
J
V , G a te -to -E m itte r V o lta g e (V )
A
V = 1 0 V
5 s P U L S E W ID T H
C C
0.0
1.0
2.0
3.0
4.0
5.0
6.0
0.1
1
1 0
1 0 0
f, F re q u e n c y (kH z )
Lo
ad
C
u
r
r
e
n
t
(
A
)
A
60% of rated
voltage
Ideal diodes
Square wave:
For both:
Triangular wave:
Clamp voltage:
80% of rated
Power Dissipation = 1.75W
Duty cycle: 50%
T = 125C
T = 55C
Gate drive as specified
sink
J
IRG4BC30U-S
4
www.irf.com
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig. 5 - Collector-to-Emitter Voltage vs.
Junction Temperature
Fig. 4 - Maximum Collector Current vs.Case
Temperature
1.5
2.0
2.5
3.0
-60
-40
-20
0
2 0
4 0
6 0
8 0
1 0 0
1 2 0
1 4 0
1 6 0
CE
V

, C
o
l
l
e
c
to
r
-
t
o
-
E
m
i
tte
r
V
o
l
t
a
g
e

(
V
)
V = 1 5 V
8 0 s P U L S E W ID T H
G E
A
T , J u n c tio n T e m p e ra tu re (C )
J
I = 2 4 A
I = 1 2 A
I = 6 .0 A
C
C
C
0.01
0.1
1
10
0.00001
0.000 1
0.0 0 1
0.0 1
0 .1
1
10
t , R e c ta n gu la r P u ls e D ura tio n (s e c )
1
th
J
C
D = 0 .5 0
0 .0 1
0 .0 2
0 .0 5
0.1 0
0.2 0
S IN G L E P U L S E
(T H E R M A L R E S P O N S E )
T
h
e
r
m
a
l R
e
s
p
o
n
s
e
(
Z
)
P
t
2
1
t
D M
N o te s :
1 . D u ty f ac t or D = t / t
2 . P e a k T = P x Z + T
1
2
J
D M
th J C
C
0
5
10
15
20
25
25
50
75
100
125
150
M
a
x
i
m
u
m
DC
C
o
l
l
e
c
t
o
r

Cu
r
r
e
n
t
(
A
T , C a se Te m p e ra tu re (C )
C
V = 1 5 V
G E
A
IRG4BC30U-S
www.irf.com
5
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
0
4 0 0
8 0 0
1 2 0 0
1 6 0 0
2 0 0 0
1
1 0
1 0 0
C E
C
,
C
a
p
a
ci
t
a
nc
e (
p
F
)
V , C o lle c to r-to -E m itte r V o lta g e (V )
A
V = 0 V , f = 1 M H z
C = C + C , C S H O R TE D
C = C
C = C + C
G E
ie s ge g c ce
re s gc
o e s ce g c
C
ie s
C
re s
C
o e s
0
4
8
1 2
1 6
2 0
0
1 0
2 0
3 0
4 0
5 0
GE
V

,
G
a
t
e
-
t
o
-
E
m
i
t
te
r

V
o
l
t
a
g
e
(
V
)
g
Q , T o ta l G a te C h a rg e (n C )
A
V = 4 0 0 V
I = 1 2 A
C E
C
0.2
0.3
0.4
0.5
0
1 0
2 0
3 0
4 0
5 0
6 0
G
T
o
t
a
l
S
w
i
t
c
h
i
ng Losses (
m
J)
R , G a te R e sista n ce (
)
A
V = 4 8 0 V
V = 1 5 V
T = 2 5 C
I = 1 2 A
C C
G E
J
C
0.1
1
1 0
-60
-40
-20
0
2 0
4 0
6 0
8 0
1 0 0
1 2 0
1 4 0
1 6 0
T
o
ta
l S
w
it
c
h
in
g
L
o
s
s
e
s
(
m
J
)
A
I = 6 .0 A
I = 1 2A
I = 2 4 A
R = 2 3
V = 1 5 V
V = 4 8 0 V
C
C
C
J
T , Ju n ctio n T e m pe ra tu re (C )
G
G E
C C