ChipFind - документация

Электронный компонент: IRG4PC40U

Скачать:  PDF   ZIP
IRG4PC40U
UltraFast Speed IGBT
INSULATED GATE BIPOLAR TRANSISTOR
PD 91466E
E
C
G
n-channel
TO-247AC
Features
Features
Features
Features
Features
UltraFast: Optimized for high operating
frequencies 8-40 kHz in hard switching, >200
kHz in resonant mode
Generation 4 IGBT design provides tighter
parameter distribution and higher efficiency than
Generation 3
Industry standard TO-247AC package
Generation 4 IGBT's offer highest efficiency available
IGBT's optimized for specified application conditions
Designed to be a "drop-in" replacement for equivalent
industry-standard Generation 3 IR IGBT's
Benefits
Parameter
Min.
Typ.
Max.
Units
R
JC
Junction-to-Case
------
------
0.77
R
CS
Case-to-Sink, flat, greased surface
------
0.24
------
C/W
R
JA
Junction-to-Ambient, typical socket mount
------
------
40
Wt
Weight
------
6 (0.21)
------
g (oz)
Absolute Maximum Ratings
Parameter
Max.
Units
V
CES
Collector-to-Emitter Voltage
600
V
I
C
@ T
C
= 25C
Continuous Collector Current
40
I
C
@ T
C
= 100C
Continuous Collector Current
20
A
I
CM
Pulsed Collector Current
Q
160
I
LM
Clamped Inductive Load Current
R
160
V
GE
Gate-to-Emitter Voltage
20
V
E
ARV
Reverse Voltage Avalanche Energy
S
15
mJ
P
D
@ T
C
= 25C
Maximum Power Dissipation
160
P
D
@ T
C
= 100C
Maximum Power Dissipation
65
T
J
Operating Junction and
-55 to +150
T
STG
Storage Temperature Range
C
Soldering Temperature, for 10 sec.
300 (0.063 in. (1.6mm) from case)
Mounting torque, 6-32 or M3 screw.
10 lbfin (1.1Nm)
Thermal Resistance
V
CES
= 600V
V
CE(on) typ.
=
1.72V
@V
GE
= 15V, I
C
= 20A
12/30/00
W
www.irf.com
1
IRG4PC40U
2
www.irf.com
Notes:
Q
Repetitive rating; V
GE
= 20V, pulse width limited by
max. junction temperature. ( See fig. 13b )
R
V
CC
= 80%(V
CES
), V
GE
= 20V, L = 10H, R
G
= 10
,
(See fig. 13a)
S
Repetitive rating; pulse width limited by maximum
junction temperature.
T
Pulse width
80s; duty factor
0.1%.
U
Pulse width 5.0s, single shot.
Parameter
Min. Typ. Max. Units
Conditions
Q
g
Total Gate Charge (turn-on)
----
100
150
I
C
= 20A
Q
ge
Gate - Emitter Charge (turn-on)
----
16
25
nC
V
CC
= 400V
See Fig. 8
Q
gc
Gate - Collector Charge (turn-on)
----
40
60
V
GE
= 15V
t
d(on)
Turn-On Delay Time
----
34
----
T
J
= 25C
t
r
Rise Time
----
19
----
ns
I
C
= 20A, V
CC
= 480V
t
d(off)
Turn-Off Delay Time
----
110
175
V
GE
= 15V, R
G
= 10
t
f
Fall Time
----
120
180
Energy losses include "tail"
E
on
Turn-On Switching Loss
----
0.32
----
E
off
Turn-Off Switching Loss
----
0.35
----
mJ
See Fig. 10, 11, 13, 14
E
ts
Total Switching Loss
----
0.67
1.0
t
d(on)
Turn-On Delay Time
----
30
----
T
J
= 150C,
t
r
Rise Time
----
19
----
ns
I
C
= 20A, V
CC
= 480V
t
d(off)
Turn-Off Delay Time
----
220
----
V
GE
= 15V, R
G
= 10
t
f
Fall Time
----
160
----
Energy losses include "tail"
E
ts
Total Switching Loss
----
1.4
----
mJ
See Fig. 13, 14
L
E
Internal Emitter Inductance
----
13
----
nH
Measured 5mm from package
C
ies
Input Capacitance
----
2100
----
V
GE
= 0V
C
oes
Output Capacitance
----
140
----
pF
V
CC
= 30V
See Fig. 7
C
res
Reverse Transfer Capacitance
----
34
----
= 1.0MHz
Switching Characteristics @ T
J
= 25C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)CES
Collector-to-Emitter Breakdown Voltage
600
----
----
V
V
GE
= 0V, I
C
= 250A
V
(BR)ECS
Emitter-to-Collector Breakdown Voltage
T
18
----
----
V
V
GE
= 0V, I
C
= 1.0A
V
(BR)CES
/
T
J
Temperature Coeff. of Breakdown Voltage ----
0.63
----
V/C
V
GE
= 0V, I
C
= 1.0mA
V
CE(on)
Collector-to-Emitter Saturation Voltage
----
1.72
2.1
I
C
= 20A
V
GE
= 15V
----
2.15
----
V
I
C
= 40A
----
1.7
----
I
C
= 20A, T
J
= 150C
V
GE(th)
Gate Threshold Voltage
3.0
----
6.0
V
CE
= V
GE
, I
C
= 250A
V
GE(th)
/
T
J
Temperature Coeff. of Threshold Voltage ----
-13
---- mV/C V
CE
= V
GE
, I
C
= 250A
g
fe
Forward Transconductance
U
11
18
----
S
V
CE
= 100V, I
C
= 20A
----
----
250
V
GE
= 0V, V
CE
= 600V
I
CES
Zero Gate Voltage Collector Current
----
----
2.0
A
V
GE
= 0V, V
CE
= 10V, T
J
= 25C
----
----
2500
V
GE
= 0V, V
CE
= 600V, T
J
= 150C
I
GES
Gate-to-Emitter Leakage Current
----
----
100
n A
V
GE
= 20V
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
See Fig. 2, 5
IRG4PC40U
www.irf.com
3
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=I
RMS
of fundamental; for triangular wave, I=I
PK
)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
1
1 0
1 0 0
1 0 0 0
4
6
8
1 0
1 2
C
I
,
C
o
l
l
e
c
t
o
r
-
t
o
-
E
m
i
tt
e
r

C
u
r
r
e
n
t
(
A
)
G E
T = 2 5 C
T = 1 5 0 C
J
J
V , G a te -to -E m itte r V o lta g e (V )
A
V = 1 0 V
5 s P U L S E W ID T H
C C
1
1 0
1 0 0
1 0 0 0
0 . 1
1
1 0
C E
C
I , Collector-to-Emitter Current (A)
V , Collector-to-Emitter Voltage (V)
T = 150C
T = 25C
J
J
V = 15V
20s PULSE WIDTH
G E
A
0
2 0
4 0
6 0
8 0
0 . 1
1
1 0
1 0 0
f, Frequency (kHz)
Load Current (A)
A
6 0 % o f ra ted
v o ltag e
Id e a l d io d e s
S q u a r e w a v e :
F o r b o th :
D uty c y c le : 5 0 %
T = 1 2 5 C
T = 9 0 C
G a te d riv e a s s p e c ifie d
s ink
J
P o w e r D is s ip a tio n = 4 0 W
T ria ng u la r w a v e :
C la m p v o lta g e :
8 0 % o f ra te d
IRG4PC40U
4
www.irf.com
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig. 5 - Collector-to-Emitter Voltage vs.
Junction Temperature
Fig. 4 - Maximum Collector Current vs. Case
Temperature
1 . 0
1 . 5
2 . 0
2 . 5
- 6 0
- 4 0
- 2 0
0
2 0
4 0
6 0
8 0
1 0 0
1 2 0
1 4 0
1 6 0
CE
V , Collector-to-Emitter Voltage (V)
V = 15V
80s PULSE WIDTH
G E
A
I = 40A
I = 20A
I = 10A
T , Junction Temperature (C)
J
C
C
C
0 .0 1
0 .1
1
0 .0 0 0 0 1
0 .0 0 0 1
0 .0 0 1
0 .0 1
0 .1
1
1 0
t , R ectangular Pulse Duration (sec)
1
th
J
C
D = 0 .5 0
0.0 1
0.0 2
0 .05
0.1 0
0.2 0
S IN G LE P UL S E
(T H E R M A L R E S P O NS E )
T
h
e
r
m
a
l
R
e
s
p
ons
e (
Z

)
P
t
2
1
t
D M
N o te s:
1 . D u ty fa c to r D = t / t
2 . P e a k T = P x Z + T
1
2
J
D M
th J C
C
0
1 0
2 0
3 0
4 0
2 5
5 0
7 5
1 0 0
1 2 5
1 5 0
Maximum DC Collector Current (A)
T , Case Temperature (C)
C
V = 15V
G E
A
IRG4PC40U
www.irf.com
5
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
0
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
1
1 0
1 0 0
C E
C
,
C
a
pac
i
t
an
c
e
(
p
F
)
V , C ollector-to-E m itter V olta ge (V )
A
V = 0 V , f = 1M H z
C = C + C , C S H O R T E D
C = C
C = C + C
G E
ie s g e g c c e
re s g c
o e s c e g c
C
ie s
C
re s
C
o es
0
4
8
1 2
1 6
2 0
0
2 0
4 0
6 0
8 0
1 0 0
1 2 0
GE
V

,
G
a
t
e
-t
o
-
E
m
i
t
t
e
r

V
o
l
t
age
(
V
)
g
Q , T o ta l G a te C h a rg e (n C )
A
V = 4 0 0 V
I = 2 0 A
C E
C
0 . 1
1
1 0
- 6 0
- 4 0
- 2 0
0
2 0
4 0
6 0
8 0
1 0 0
1 2 0
1 4 0
1 6 0
Total Switching Losses (mJ)
R = 10
V = 15V
V = 480V
A
I = 40A
I = 20A
I = 10A
G
G E
C C
C
C
C
T , Junction Temperature (C)
J
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0
1 . 1
0
1 0
2 0
3 0
4 0
5 0
6 0
G
Total Switching Losses (mJ)
R , Gate Resistance (
)
A
V = 480V
V = 15V
T = 25C
I = 20A
C C
G E
J
C
Fig. 10 - Typical Switching Losses vs.
Junction Temperature