ChipFind - документация

Электронный компонент: IRGP20B120U-E

Скачать:  PDF   ZIP
INSULATED GATE BIPOLAR TRANSISTOR
Features
UltraFast IGBT
Benefits
Benchmark efficiency above 20KHz
Optimized for Welding, UPS, and Induction Heating
applications
Rugged with UltraFast performance
Low EMI
Significantly Less Snubber required
Excellent Current sharing in Parallel operation
Longer leads for easier mounting
UltraFast Non Punch Through (NPT)
Technology
10
s Short Circuit capability
Square RBSOA
Positive V
CE
(on) Temperature Coefficient
Extended lead TO-247 package
V
CES
= 1200V
V
CE(on) typ.
=
3.05V
V
GE
= 15V, I
C
= 20A, 25C
G
C
E
Thermal Resistance
Parameter
Min.
Typ.
Max.
Units
R
JC
Junction-to-Case - IGBT
0.42
R
CS
Case-to-Sink, flat, greased surface
0.24
R
JA
Junction-to-Ambient, typical socket mount
40
Wt
Weight
6 (0.21)
g (oz)
Z
JC
Transient Thermal Impedance Junction-to-Case
(Fig.18)
C/W
n-channel
TO-247AD
Absolute Maximum Ratings
Parameter
Max.
Units
V
CES
Collector-to-Emitter Breakdown Voltage
1200
V
I
C
@ T
C
= 25C
Continuous Collector Current
(Fig.1)
40
I
C
@ T
C
= 100C
Continuous Collector Current
(Fig.1)
20
A
I
CM
Pulsed Collector Current
(Fig.3, Fig. CT.5)
120
I
LM
Clamped Inductive Load Current
(Fig.4, Fig. CT.2)
120
V
GE
Gate-to-Emitter Voltage
20
V
E
AS
@ T
C
=25C
Avalanche Energy, single pulse
65
I
C
= 25A, V
CC
= 50V, R
GE
= 25ohm
L = 200H
(Fig. CT.6)
P
D
@ T
C
= 25C
Maximum Power Dissipation
(Fig.2)
300
P
D
@ T
C
= 100C
Maximum Power Dissipation
(Fig.2)
120
T
J
Operating Junction and
-55 to + 150
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
300, (0.063 in. (1.6mm) from case)
C
Mounting torque, 6-32 or M3 screw.
10 lbfin (1.1Nm)
W
mJ
03/06/01
IRGP20B120U-E
www.irf.com
1
PD- 94117
IRGP20B120U-E
2
www.irf.com
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
Parameter
Min.
Typ.
Max. Units
Conditions
Fig.
V
(BR)CES
Collector-to-Emitter Breakdown Voltage
1200
V
V
GE
= 0V,I
c
=250 A
V
(BR)CES
/
Tj
Temperature Coeff. of Breakdown Voltage
+1.2
V/C
V
GE
= 0V, I
c
= 1 mA ( 25 -125
o
C )
3.05
3.45
I
C
= 20A, V
GE
= 15V
5, 6
Collector-to-Emitter Saturation
3.37
3.80
I
C
= 25A, V
GE
= 15V
7, 8
V
CE(on)
Voltage
4.23
4.85
V
I
C
= 40A, V
GE
= 15V
9
3.89
4.50
I
C
= 20A, V
GE
= 15V, T
J
= 125C
10
4.31
5.06
I
C
= 25A, V
GE
= 15V, T
J
= 125C
V
GE(th)
Gate Threshold Voltage
4.0
5.0
6.0
V
V
CE
= V
GE
, I
C
= 250 A
8,9,10,11
V
GE(th)
/
Tj
Temperature Coeff. of Threshold Voltage
- 1.2
mV/
o
C
V
CE
= V
GE
, I
C
= 1 mA (25 -125
o
C)
g
fe
Forward Transconductance
13.6
15.7
17.8
S
V
CE
= 50V, I
C
= 20A, PW=80s
250
V
GE
= 0V, V
CE
= 1200V
I
CES
Zero Gate Voltage Collector Current
420
750
A
V
GE
= 0V, V
CE
= 1200V, T
J
=125C
1482
2200
V
GE
= 0V, V
CE
= 1200V, T
J
=150C
I
GES
Gate-to-Emitter Leakage Current
100
nA
V
GE
= 20V
Switching Characteristics @ T
J
= 25C (unless otherwise specified)
Parameter
Min.
Typ.
Max. Units
Conditions
Fig.
Q
g
Total Gate charge (turn-on)
169
254
I
C
= 20A
17
Q
ge
Gate - Emitter Charge (turn-on)
24
36
nC
V
CC
= 600V
CT 1
Q
gc
Gate - Collector Charge (turn-on)
82
126
V
GE
= 15V
E
on
Turn-On Switching Loss *
850
1050
I
C
= 20A, V
CC
= 600V
CT 4
E
off
Turn-Off Switching Loss *
425
650
J
V
GE
= 15V, Rg = 5
,
L = 200H
WF 1
E
tot
Total Switching Loss *
1275 1800
T
J
= 25
o
C, Energy losses include tail
and diode reverse recovery
WF 2
E
on
Turn-on Switching Loss *
1350
1550
Ic = 20A, V
CC
= 600V
12, 14
E
off
Turn-off Switching Loss *
610
875
J
V
GE
= 15V, Rg = 5
,
L = 200H
CT 4
E
tot
Total Switching Loss *
1960 2425
T
J
= 125
o
C, Energy losses include tail
and diode reverse recovery
WF 1 & 2
td(on)
Turn - on delay time
50
65
Ic = 20A, V
CC
= 600V
13, 15
tr
Rise time
20
30
ns
V
GE
= 15V, Rg = 5
,
L = 200H
CT 4
td(off)
Turn - off delay time
204
230
T
J
= 125
o
C
WF 1
tf
Fall time
24
35
WF 2
C
ies
Input Capacitance
2200
V
GE
= 0V
C
oes
Output Capacitance
210
pF
V
CC
= 30V
16
C
res
Reverse Transfer Capacitance
85
f = 1.0 MHz
T
J
= 150
o
C, Ic = 120A
4
RBSOA
Reverse bias safe operating area
FULL SQUARE
V
CC
= 1000V, V
P
= 1200V
CT 2
Rg = 5
, V
GE
= +15V to 0V
T
J
= 150
o
C
CT 3
SCSOA
Short Circuit Safe Operating Area
10
----
----
s
V
CC
= 900V, V
P
= 1200V
WF 3
Rg = 5
, V
GE
= +15V to 0V
Le
Internal Emitter Inductance
13
nH
Measured 5 mm from the package.
* Used Diode HF40D120ACE
IRGP20B120U-E
www.irf.com
3
F i g .1 - M a x i m u m D C C o l l e c to r
C u rre n t v s . C a s e T e m p e ra tu re
0
5
1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0
0
4 0
8 0
1 2 0
1 6 0
T
C
( C )
I
C
(
A

)
F i g .3 - F o rw a rd S O A
T
C
= 2 5 C ; T j < 1 5 0 C
0 .1
1
1 0
1 0 0
1 0 0 0
1
1 0
1 0 0
1 0 0 0
1 0 0 0 0
V
C E
(V )
I
C
(
A

)
D C
10m s
1m s
100 s
10 s
2 s
P U L S E D
F i g .2 - P o w e r D i s s i p a ti o n v s . C a s e
T e m p e ra tu re
0
4 0
8 0
1 2 0
1 6 0
2 0 0
2 4 0
2 8 0
3 2 0
0
4 0
8 0
1 2 0
1 6 0
T
C
(C )
P
t o

t
(
W

)
F i g .4 - R e v e rs e B i a s S O A
T j = 1 5 0 C , V
G E
= 1 5 V
1
1 0
1 0 0
1 0 0 0
1
1 0
1 0 0
1 0 0 0
1 0 0 0 0
V
C E
(V )
I
C
(
A

)
IRGP20B120U-E
4
www.irf.com
F i g .5 - T y p i c a l IG B T O u tp u t
C h a ra c te ri s ti c s
T j= -4 0 C ; tp = 3 0 0 s
0
5
1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0
5 5
6 0
0
1
2
3
4
5
6
V
C E
(V )
I
C
( A

)
V
G E
= 18V
V
G E
= 15V
V
G E
= 12V
V
G E
= 10V
V
G E
= 8V
F i g .6 - T y p i c a l IG B T O u tp u t
C h a ra c te ri s ti c s
T j= 2 5 C ; tp = 3 0 0 s
0
5
1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0
5 5
6 0
0
1
2
3
4
5
6
V
C E
(V )
I
C
( A

)
V
G E
= 18V
V
G E
= 15V
V
G E
= 12V
V
G E
= 10V
V
G E
= 8V
F ig .7 - T y p ic a l IG B T O u tp u t
C h a ra c te ris tic s
T j= 1 2 5 C ; tp = 3 0 0 s
0
5
1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0
5 5
6 0
0
1
2
3
4
5
6
V
C E
(V )
I
C
( A

)
V
G E
= 18V
V
G E
= 15V
V
G E
= 12V
V
G E
= 10V
V
G E
= 8V
IRGP20B120U-E
www.irf.com
5
F i g .9 - T y p i c a l V
C E
v s V
G E
T j= -4 0 C
0
2
4
6
8
1 0
1 2
1 4
1 6
1 8
2 0
6
8
1 0
1 2
1 4
1 6
1 8
2 0
V
G E
(V )
V
C E
( V

)
I
C E
= 1 0 A
I
C E
= 2 0 A
I
C E
= 4 0 A
8
F i g .1 0 - T y p i c a l V
C E
v s V
G E
T j= 2 5 C
0
2
4
6
8
1 0
1 2
1 4
1 6
1 8
2 0
6
8
1 0
1 2
1 4
1 6
1 8
2 0
V
G E
(V )
V
C E
( V

)
I
C E
= 1 0 A
I
C E
= 2 0 A
I
C E
= 4 0 A
9
F i g .1 1 - T y p i c a l V
C E
v s V
G E
T j= 1 2 5 C
0
2
4
6
8
1 0
1 2
1 4
1 6
1 8
2 0
6
8
1 0
1 2
1 4
1 6
1 8
2 0
V
G E
(V )
V
C E
( V

)
I
C E
= 1 0 A
I
C E
= 2 0 A
I
C E
= 4 0 A
10
Fig.12 - Ty p. Trans fer C harac teris tic s
V
C E
= 20V ; tp= 20 s
0
2 5
5 0
7 5
1 0 0
1 2 5
1 5 0
1 7 5
2 0 0
2 2 5
2 5 0
0
4
8
1 2
1 6
2 0
V
G E
(V )
I
C
( A

)
T j= 2 5 C
T j= 1 2 5 C
T j= 2 5 C
T j= 1 2 5 C
11