ChipFind - документация

Электронный компонент: IRL2203

Скачать:  PDF   ZIP
IRL2203N
HEXFET
Power MOSFET
3/16/01
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
0.85
R
CS
Case-to-Sink, Flat, Greased Surface
0.50
C/W
R
JA
Junction-to-Ambient
62
Thermal Resistance
www.irf.com
1
V
DSS
= 30V
R
DS(on)
= 7.0m
I
D
= 116A
S
D
G
TO-220AB
Advanced HEXFET
Power MOSFETs from International
Rectifier utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This benefit,
combined with the fast switching speed and ruggedized
device design that HEXFET power MOSFETs are well
known for, provides the designer with an extremely efficient
and reliable device for use in a wide variety of applications.
The TO-220 package is universally preferred for all
commercial-industrial applications at power dissipation
levels to approximately 50 watts. The low thermal
resistance and low package cost of the TO-220 contribute
to its wide acceptance throughout the industry.
l
Advanced Process Technology
l
Ultra Low On-Resistance
l
Dynamic dv/dt Rating
l
175C Operating Temperature
l
Fast Switching
l
Fully Avalanche Rated
Description
PD - 91366
Absolute Maximum Ratings
Parameter
Max.
Units
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
116
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ 10V
82
A
I
DM
Pulsed Drain Current
400
P
D
@T
C
= 25C
Power Dissipation
180
W
Linear Derating Factor
1.2
W/C
V
GS
Gate-to-Source Voltage
16
V
I
AR
Avalanche Current
60
A
E
AR
Repetitive Avalanche Energy
18
mJ
dv/dt
Peak Diode Recovery dv/dt
5.0
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
C
Mounting torque, 6-32 or M3 srew
10 lbfin (1.1Nm)
IRL2203N
2
www.irf.com
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
30
V
V
GS
= 0V, I
D
= 250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
0.029
V/C
Reference to 25C, I
D
= 1mA
7.0
V
GS
= 10V, I
D
= 60A
10
V
GS
= 4.5V, I
D
= 48A
V
GS(th)
Gate Threshold Voltage
1.0
V
V
DS
= V
GS
, I
D
= 250A
g
fs
Forward Transconductance
73
S
V
DS
= 25V, I
D
= 60A
25
A
V
DS
= 30V, V
GS
= 0V
250
V
DS
= 24V, V
GS
= 0V, T
J
= 125C
Gate-to-Source Forward Leakage
100
V
GS
= 16V
Gate-to-Source Reverse Leakage
-100
nA
V
GS
= -16V
Q
g
Total Gate Charge
60
I
D
= 60A
Q
gs
Gate-to-Source Charge
14
nC
V
DS
= 24V
Q
gd
Gate-to-Drain ("Miller") Charge
33
V
GS
= 4.5V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time
11
V
DD
= 15V
t
r
Rise Time
160
I
D
= 60A
t
d(off)
Turn-Off Delay Time
23
R
G
= 1.8
t
f
Fall Time
66
V
GS
= 4.5V, See Fig. 10
Between lead,
6mm (0.25in.)
from package
and center of die contact
C
iss
Input Capacitance
3290
V
GS
= 0V
C
oss
Output Capacitance
1270
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
170
pF
= 1.0MHz, See Fig. 5
E
AS
Single Pulse Avalanche Energy
1320
290
mJ
I
AS
= 60A, L = 0.16mH
S
D
G
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
1.2
V
T
J
= 25C, I
S
= 60A, V
GS
= 0V
t
rr
Reverse Recovery Time
56
84
ns
T
J
= 25C, I
F
= 60A
Q
rr
Reverse Recovery Charge
110
170
nC
di/dt = 100A/s
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Source-Drain Ratings and Characteristics
116
400
A
Starting T
J
= 25C, L = 0.16mH
R
G
= 25
, I
AS
= 60A, V
GS
=10V (See Figure 12)
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
Notes:
I
SD
60A, di/dt
110A/s, V
DD
V
(BR)DSS
,
T
J
175C
Pulse width
400s; duty cycle
2%.
This is a typical value at device destruction and represents
operation outside rated limits.
This is a calculated value limited to T
J
= 175C .
Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 75A.
S
D
G
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
R
DS(on)
Static Drain-to-Source On-Resistance
I
GSS
nH
L
S
Internal Source Inductance
7.5
L
D
Internal Drain Inductance
4.5
I
DSS
Drain-to-Source Leakage Current
m
IRL2203N
www.irf.com
3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
1
10
100
1000
0.1
1
10
100
20s PULSE WIDTH
T = 25 C
J
TOP
BOTTOM
VGS
15V
10V
4.5V
3.7V
3.5V
3.3V
3.0V
2.7V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
2.7V
1
10
100
1000
0.1
1
10
100
20s PULSE WIDTH
T = 175 C
J
TOP
BOTTOM
VGS
15V
10V
4.5V
3.7V
3.5V
3.3V
3.0V
2.7V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
2.7V
10
100
1000
2.0
3.0
4.0
5.0
6.0
7.0
V = 15V
20s PULSE WIDTH
DS
V , Gate-to-Source Voltage (V)
I , Drain-to-Source Current (A)
GS
D
T = 25 C
J
T = 175 C
J
-60 -40 -20
0
20 40 60 80 100 120 140 160 180
0.0
0.5
1.0
1.5
2.0
2.5
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
V
=
I =
GS
D
10V
100A
IRL2203N
4
www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
0
20
40
60
80
0
3
6
9
12
15
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
FOR TEST CIRCUIT
SEE FIGURE
I =
D
13
60A
V
= 15V
DS
V
= 24V
DS
0.1
1
10
100
1000
0.0
0.4
0.8
1.2
1.6
2.0
2.4
V ,Source-to-Drain Voltage (V)
I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 25 C
J
T = 175 C
J
1
10
100
VDS , Drain-toSource Voltage (V)
1
10
100
1000
10000
I D
, Drain-to-Source Current (A)
Tc = 25C
Tj = 175C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100sec
1
10
100
0
1000
2000
3000
4000
5000
6000
V , Drain-to-Source Voltage (V)
C, Capacitance (pF)
DS
V
C
C
C
=
=
=
=
0V,
C
C
C
f = 1MHz
+ C
+ C
C SHORTED
GS
iss
gs
gd ,
ds
rss
gd
oss
ds
gd
Ciss
Coss
Crss
IRL2203N
www.irf.com
5
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
0.01
0.1
1
0.00001
0.0001
0.001
0.01
0.1
Notes:
1. Duty factor D =
t / t
2. Peak T = P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response
(Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
V
DS
Pulse Width
1
s
Duty Factor
0.1 %
R
D
V
GS
R
G
D.U.T.
V
GS
+
-
V
DD
Fig 10a. Switching Time Test Circuit
Fig 10b. Switching Time Waveforms
25
50
75
100
125
150
175
0
20
40
60
80
100
120
T , Case Temperature ( C)
I , Drain Current (A)
C
D
LIMITED BY PACKAGE