ChipFind - документация

Электронный компонент: IRL2703S

Скачать:  PDF   ZIP
HEXFET
Power MOSFET
IRL2703S
PD - 9.1360
l
Logic-Level Gate Drive
l
Advanced Process Technology
l
Dynamic dv/dt Rating
l
175C Operating Temperature
l
Fast Switching
l
Fully Avalanche Rated
V
DSS
= 30V
R
DS(on)
= 0.04
I
D
= 24A
S
D
G
11/18/96
PRELIMINARY
Parameter
Min.
Typ.
Max.
Units
R
JC
Junction-to-Case
3.3
R
JA
Junction-to-Ambient (PCB Mount,steady-state)**
40
Thermal Resistance
C/W
Parameter
Max.
Units
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
24
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ 10V
17
A
I
DM
Pulsed Drain Current
96
P
D
@T
C
= 25C
Power Dissipation
45
W
Linear Derating Factor
0.30
W/C
V
GS
Gate-to-Source Voltage
16
V
E
AS
Single Pulse Avalanche Energy
77
mJ
I
AR
Avalanche Current
14
A
E
AR
Repetitive Avalanche Energy
4.5
mJ
dv/dt
Peak Diode Recovery dv/dt
3.5
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
C
Soldering Temperature, for 10 seconds
300 (1.6mm from case)
Absolute Maximum Ratings
Fifth Generation HEXFETs from International Rectifier
utilize advanced processing techniques to achieve the
lowest possible on-resistance per silicon area. This benefit,
combined with the fast switching speed and ruggedized
device design that HEXFET Power MOSFETs are well
known for, provides the designer with an extremely efficient
device for use in a wide variety of applications.
The D
2
PAK is a surface mount power package capable of
accommodating die sizes up to HEX-4. It provides the
highest power capability and the lowest possible on-
resistance in any existing surface mount package. The
D
2
PAK is suitable for high current applications because of
its low internal connection resistance and can dissipate up
to 2.0W in a typical surface mount application.
Description
2
D Pak
IRL2703S
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
30
V
V
GS
= 0V, I
D
= 250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
0.030
V/C
Reference to 25C, I
D
= 1mA
0.040
V
GS
= 10V, I
D
= 14A
0.060
V
GS
= 4.5V, I
D
= 12A
V
GS(th)
Gate Threshold Voltage
1.0
V
V
DS
= V
GS
, I
D
= 250A
g
fs
Forward Transconductance
6.4
S
V
DS
= 25V, I
D
= 14A
25
V
DS
= 30V, V
GS
= 0V
250
V
DS
= 24V, V
GS
= 0V, T
J
= 150C
Gate-to-Source Forward Leakage
100
V
GS
= 16V
Gate-to-Source Reverse Leakage
-100
V
GS
= -16V
Q
g
Total Gate Charge
15
I
D
= 14A
Q
gs
Gate-to-Source Charge
4.6
nC
V
DS
= 24V
Q
gd
Gate-to-Drain ("Miller") Charge
9.3
V
GS
= 4.5V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time
8.5
V
DD
= 15V
t
r
Rise Time
140
I
D
= 14A
t
d(off)
Turn-Off Delay Time
12
R
G
= 12
,
V
GS
= 4.5V
t
f
Fall Time
20
R
D
= 1.0
,
See Fig. 10
Between lead,
and center of die contact
C
iss
Input Capacitance
450
V
GS
= 0V
C
oss
Output Capacitance
210
pF
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
110
= 1.0MHz, See Fig. 5
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
nA
I
DSS
Drain-to-Source Leakage Current
R
DS(on)
Static Drain-to-Source On-Resistance
I
GSS
ns
A
nH
L
S
Internal Source Inductance
7.5
Source-Drain Ratings and Characteristics
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
I
SD
14A, di/dt
140A/s, V
DD
V
(BR)DSS
,
T
J
175C
Notes:
V
DD
= 15V, starting T
J
= 25C, L = 570H
R
G
= 25
, I
AS
= 14A. (See Figure 12)
Pulse width
300s; duty cycle
2%.
** When mounted on 1" square PCB ( FR-4 or G-10 Material ).
For recommended footprint and soldering techniques refer to application note #AN-994.
Uses IRL2703 data and test conditions.
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
1.3
V
T
J
= 25C, I
S
= 14A, V
GS
= 0V
t
rr
Reverse Recovery Time
65
97
ns
T
J
= 25C, I
F
= 14A
Q
rr
Reverse RecoveryCharge
140
210
nC
di/dt = 100A/s
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
A
96
24
S
D
G
IRL2703S
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
0.1
1
10
100
1000
0.1
1
10
100
I
,
D
r
ai
n-
t
o
-
S
o
u
r
c
e
C
u
r
r
en
t
(
A
)
D
V , Dra in-to-So urce V olta ge (V )
D S
A
20 s PU LSE W ID TH
T = 2 5C
J
VGS
TOP 15V
12V
10V
8.0V
6.0V
4.0V
3.0V
BOTT OM 2.5V
2. 5V
0.1
1
10
100
1000
0.1
1
10
100
I
, D
r
a
i
n
-
to
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(
A
)
D
V , Drain -to -S o urce Vo lta ge (V )
D S
A
2 0 s PU L SE W ID TH
T = 1 75 C
VGS
TOP 15V
12V
10V
8.0V
6.0V
4.0V
3.0V
BOTTOM 2.5V
2. 5V
J
0 . 1
1
1 0
1 0 0
2
3
4
5
6
7
8
9
1 0
T = 2 5 C
J
G S
V , Ga te -to -S o u rce V o l ta g e (V )
D
I
, D
r
a
i
n
-
to
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(
A
)
T = 1 7 5 C
J
A
V = 1 5 V
2 0 s P U L S E W ID T H
DS
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
- 6 0
- 4 0
- 2 0
0
2 0
4 0
6 0
8 0
1 0 0 1 2 0 1 4 0 1 6 0 1 8 0
J
T , Ju nctio n T emp eratu re (C)
R
,
D
r
a
i
n
-
to
-
S
o
u
r
c
e
O
n
R
e
s
i
s
t
a
n
c
e
D
S
(
on)
(
N
o
r
m
a
l
i
z
ed)
V = 10 V
G S
A
I = 24 A
D
IRL2703S
Fig 7. Typical Source-Drain Diode
Forward Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
0
200
400
600
800
1000
1
10
100
C
,
C
a
pac
i
t
anc
e (
p
F
)
D S
V , D rain-to -S ou rce Volta ge (V )
A
V = 0 V, f = 1M H z
C = C + C , C SH OR TE D
C = C
C = C + C
G S
is s gs gd ds
rss gd
oss d s gd
C
i s s
C
o s s
C
rs s
0
3
6
9
12
15
0
4
8
12
16
20
Q , T otal Ga te C harg e (nC )
G
V


,
G
a
t
e
-
t
o-
S
o
u
r
c
e

V
o
l
t
ag
e (
V
)
GS
A
FO R TEST CI R CU I T
SEE FIG UR E 13
V = 2 4V
V = 1 5V
I = 14A
DS
DS
D
1
1 0
1 0 0
0 . 4
0 . 8
1 . 2
1 . 6
2 . 0
2 . 4
T = 25 C
J
V = 0 V
G S
V , S o urce-to -Drain Vo lta ge (V )
I
, R
e
v
e
r
s
e
D
r
a
i
n
C
u
r
r
e
n
t
(
A
)
S D
SD
A
T = 1 75 C
J
1
10
100
1000
1
10
100
V , Dra in -to-So urce Vo ltag e (V)
D S
I
,
D
r
ai
n C
u
r
r
en
t

(
A
)
OPE R ATIO N IN TH IS A RE A LI MI TE D
BY R
D
D S(o n)
10 s
10 0s
1 ms
1 0m s
A
T = 25 C
T = 17 5C
S ing le Pulse
C
J
IRL2703S
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
V
DS
Pulse Width
1
s
Duty Factor
0.1 %
R
D
V
GS
R
G
D.U.T.
5.0V
+
-
V
DD
0
4
8
1 2
1 6
2 0
2 4
2 5
5 0
7 5
1 0 0
1 2 5
1 5 0
1 7 5
C
I
,
D
r
ai
n

C
u
r
r
ent
(
A
m
p
s
)
D
T , Case Te mpe rature (C )
A
0.01
0.1
1
10
0.00001
0.0001
0.001
0.01
0.1
1
t , R e ct a n g u la r P u ls e D u r a tio n ( se c )
1
th
J
C
D = 0 .5 0
0.0 1
0.02
0.05
0 .1 0
0.2 0
S ING L E P UL S E
( T HE R M A L R E S P O N S E )
A
Ther
m
a
l
R
e
sponse (
Z

)
P
t
2
1
t
D M
N o tes :
1 . D u ty fa c to r D = t / t
2 . P e a k T = P x Z + T
1
2
J
D M
th J C
C