ChipFind - документация

Электронный компонент: IRL520N

Скачать:  PDF   ZIP
IRL520N
HEXFET
Power MOSFET
PD - 91494A
S
D
G
V
DSS
= 100V
R
DS(on)
= 0.18
I
D
= 10A
l
Logic-Level Gate Drive
l
Advanced Process Technology
l
Dynamic dv/dt Rating
l
175C Operating Temperature
l
Fast Switching
l
Fully Avalanche Rated
Fifth Generation HEXFETs from International Rectifier
utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This
benefit, combined with the fast switching speed and
ruggedized device design that HEXFET Power
MOSFETs are well known for, provides the designer
with an extremely efficient and reliable device for use
in a wide variety of applications.
The TO-220 package is universally preferred for all
commercial-industrial applications at power dissipation
levels to approximately 50 watts. The low thermal
resistance and low package cost of the TO-220
contribute to its wide acceptance throughout the
industry.
Description
TO-220AB
5/13/98
Parameter
Max.
Units
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
10
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ 10V
7.1
A
I
DM
Pulsed Drain Current
35
P
D
@T
C
= 25C
Power Dissipation
48
W
Linear Derating Factor
0.32
W/C
V
GS
Gate-to-Source Voltage
16
V
E
AS
Single Pulse Avalanche Energy
85
mJ
I
AR
Avalanche Current
6.0
A
E
AR
Repetitive Avalanche Energy
4.8
mJ
dv/dt
Peak Diode Recovery dv/dt
5.0
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
C
Mounting torque, 6-32 or M3 srew
10 lbfin (1.1Nm)
Absolute Maximum Ratings
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
3.1
R
CS
Case-to-Sink, Flat, Greased Surface
0.50
C/W
R
JA
Junction-to-Ambient
62
Thermal Resistance
IRL520N
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
I
SD
6.0A, di/dt
340A/s, V
DD
V
(BR)DSS
,
T
J
175C
Notes:
Starting T
J
= 25C, L = 4.7mH
R
G
= 25
, I
AS
= 6.0A. (See Figure 12)
Pulse width
300s; duty cycle
2%.
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
100
V
V
GS
= 0V, I
D
= 250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
0.11
V/C
Reference to 25C, I
D
= 1mA
0.18
V
GS
= 10V, I
D
= 6.0A
0.22
V
GS
= 5.0V, I
D
= 6.0A
0.26
V
GS
= 4.0V, I
D
= 5.0A
V
GS(th)
Gate Threshold Voltage
1.0
2.0
V
V
DS
= V
GS
, I
D
= 250A
g
fs
Forward Transconductance
3.1
S
V
DS
= 25V, I
D
= 6.0A
25
A
V
DS
= 100V, V
GS
= 0V
250
V
DS
= 80V, V
GS
= 0V, T
J
= 150C
Gate-to-Source Forward Leakage
100
nA
V
GS
= 16V
Gate-to-Source Reverse Leakage
-100
V
GS
= -16V
Q
g
Total Gate Charge
20
I
D
= 6.0A
Q
gs
Gate-to-Source Charge
4.6
nC
V
DS
= 80V
Q
gd
Gate-to-Drain ("Miller") Charge
10
V
GS
= 5.0V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time
4.0
V
DD
= 50V
t
r
Rise Time
35
ns
I
D
= 6.0A
t
d(off)
Turn-Off Delay Time
23
R
G
= 11
,
V
GS
= 5.0V
t
f
Fall Time
22
R
D
= 8.2
,
See Fig. 10
Between lead,
6mm (0.25in.)
from package
and center of die contact
C
iss
Input Capacitance
440
V
GS
= 0V
C
oss
Output Capacitance
97
pF
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
50
= 1.0MHz, See Fig. 5
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
nH
I
GSS
S
D
G
L
S
Internal Source Inductance
7.5
R
DS(on)
Static Drain-to-Source On-Resistance
L
D
Internal Drain Inductance
4.5
I
DSS
Drain-to-Source Leakage Current
S
D
G
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
1.3
V
T
J
= 25C, I
S
= 6.0A, V
GS
= 0V
t
rr
Reverse Recovery Time
110
160
ns
T
J
= 25C, I
F
=6.0A
Q
rr
Reverse RecoveryCharge
410
620
nC
di/dt = 100A/s
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Source-Drain Ratings and Characteristics
A
10
35
IRL520N
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
Fig 2. Typical Output Characteristics
Fig 4. Normalized On-Resistance
Vs. Temperature
0.1
1
1 0
1 0 0
0.1
1
1 0
1 0 0
I , D
r
a
i
n
-
to
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(
A
)
D
V , D rain-to-S ou rce V o ltage (V )
D S
A
2 0 s P U LS E W ID T H
T = 2 5C
J
VGS
TOP 15V
12V
10V
8.0V
6.0V
4.0V
3.0V
BOTTOM 2.5V
2.5V
0.1
1
1 0
1 0 0
0.1
1
1 0
1 0 0
I
,
Dr
ai
n
-
t
o
-
S
ou
r
c
e Cur
r
e
n
t
(
A
)
D
V , D rain-to-S ource V oltage (V )
D S
A
2 0 s P U LS E W ID T H
T = 1 75 C
VGS
TOP 15V
12V
10V
8.0V
6.0V
4.0V
3.0V
BOTTOM 2.5V
2.5 V
J
0 . 1
1
1 0
1 0 0
2
4
6
8
1 0
T = 2 5C
J
G S
V , G ate-to -S ou rce V oltage (V )
D
I
,
D
r
a
i
n
-
t
o
-
S
o
u
rc
e

C
u
rre
n
t
(A
)
T = 1 7 5C
J
A
V = 5 0V
2 0 s P U L S E W ID TH
D S
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
- 6 0
- 4 0
- 2 0
0
2 0
4 0
6 0
8 0
1 0 0 1 2 0 1 4 0 1 6 0 1 8 0
J
T , Junction T em perature (C )
R
, D
r
a
i
n
-
to
-
S
o
u
r
c
e
O
n
R
e
s
i
s
t
a
n
c
e
DS
(
o
n
)
(
N
or
m
a
l
i
z
ed)
V = 10 V
G S
A
I = 1 0A
D
IRL520N
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
0
2 0 0
4 0 0
6 0 0
8 0 0
1
1 0
1 0 0
C
,
Cap
ac
i
t
a
n
c
e
(
p
F
)
D S
V , D rain-to-S ourc e V oltage (V )
A
V = 0V , f = 1 M H z
C = C + C , C S H O R TE D
C = C
C = C + C
G S
iss g s g d d s
rs s g d
o ss ds g d
C
is s
C
os s
C
rs s
0
3
6
9
1 2
1 5
0
5
1 0
1 5
2 0
2 5
Q , Total G ate C harge (nC )
G
V
, G
a
te
-
t
o
-
S
o
u
r
c
e
V
o
l
t
a
g
e
(
V
)
GS
V = 80 V
V = 50 V
V = 20 V
A
F O R TE S T C IR C U IT
S E E F IG U R E 1 3
I = 6 .0A
D
D S
D S
D S
0 . 1
1
1 0
1 0 0
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4
T = 2 5C
J
V = 0V
G S
V , S o urc e-to -D ra in V o lta ge (V )
I , R
e
v
e
r
s
e
D
r
a
i
n
C
u
r
r
e
n
t
(
A
)
S D
SD
A
T = 1 75 C
J
0.1
1
1 0
1 0 0
1
1 0
1 0 0
1 0 0 0
V , D rain-to-S ource V oltage (V )
D S
I
,
Dr
ai
n
C
u
r
r
e
nt
(
A
)
O P E R A T IO N IN T H IS A R E A L IM ITE D
B Y R
D
D S (o n)
1 0 s
1 0 0 s
1 m s
1 0 m s
A
T = 25 C
T = 17 5C
S ing le P u ls e
C
J
IRL520N
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
V
DS
Pulse Width
1
s
Duty Factor
0.1 %
R
D
V
GS
R
G
D.U.T.
5.0V
+
-
V
DD
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
0
2
4
6
8
1 0
2 5
5 0
7 5
1 0 0
1 2 5
1 5 0
1 7 5
C
I , D
r
a
i
n
C
u
r
r
e
n
t
(
A
m
p
s
)
D
T , C ase T em pe ra ture (C )
A
0.01
0.1
1
10
0.00001
0.0001
0.001
0.01
0.1
Notes:
1. Duty factor D =
t / t
2. Peak T = P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response
(Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)