ChipFind - документация

Электронный компонент: IRLI3615

Скачать:  PDF   ZIP
IRLI3615
HEXFET
Power MOSFET
Fifth Generation HEXFETs from International Rectifier utilize advanced
processing techniques to achieve extremely low on-resistance per silicon area.
This benefit, combined with the fast switching speed and ruggedized device
design that HEXFET Power MOSFETs are well known for, provides the
designer with an extremely efficient and reliable device for use in a wide variety
of applications.
The TO-220 Fullpak eliminates the need for additional insulating hardware in
commercial-industrial applications. The moulding compound used provides a
high isolation capability and a low thermal resistance between the tab and
external heatsink. This isolation is equivalent to using a 100 micron mica barrier
with standard TO-220 product. The Fullpak is mounted to a heatsink using a
single clip or by a single screw fixing.
S
D
G
Parameter
Max.
Units
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
14
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ 10V
9.8
A
I
DM
Pulsed Drain Current
56
P
D
@T
C
= 25C
Power Dissipation
45
W
Linear Derating Factor
0.30
W/C
V
GS
Gate-to-Source Voltage
16
V
E
AS
Single Pulse Avalanche Energy
340
mJ
I
AR
Avalanche Current
8.4
A
E
AR
Repetitive Avalanche Energy
4.5
mJ
dv/dt
Peak Diode Recovery dv/dt
5.0
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
C
Mounting torque, 6-32 or M3 srew
10 lbfin (1.1Nm)
Absolute Maximum Ratings
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
3.3
R
JA
Junction-to-Ambient
65
Thermal Resistance
V
DSS
= 150V
R
DS(on)
= 0.085
I
D
= 14A
l
Advanced Process Technology
l
Ultra Low On-Resistance
l
Dynamic dv/dt Rating
l
175C Operating Temperature
l
Fast Switching
l
Fully Avalanche Rated
Description
01/30/02
www.irf.com
1
TO-220 FULLPAK
C/W
PD - 94390
IRLI3615
2
www.irf.com
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
Starting T
J
= 25C, L = 9.5mH
R
G
= 25
, I
AS
= 8.4A. (See Figure 12)
I
SD
8.4A, di/dt
510A/s, V
DD
V
(BR)DSS
,
T
J
175C.
Notes:
Pulse width
300s; duty cycle
2%.
Caculated continuous current based on maximum allowable
junction temperature; for recommended current-handling of the
package refer to Design Tip # 93-4.
S
D
G
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
1.3
V
T
J
= 25C, I
S
= 8.4A, V
GS
= 0V
t
rr
Reverse Recovery Time
180
270
ns
T
J
= 25C, I
F
= 8.4A
Q
rr
Reverse RecoveryCharge
1130 1700
nC
di/dt = 100A/s
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Source-Drain Ratings and Characteristics
14
56
A
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
150
V
V
GS
= 0V, I
D
= 250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
0.18
V/C
Reference to 25C, I
D
= 1mA
0.085
V
GS
= 10V, I
D
= 8.4A
0.095
V
GS
= 5.0V, I
D
= 8.4A
V
GS(th)
Gate Threshold Voltage
1.0
2.0
V
V
DS
= V
GS
, I
D
= 250A
g
fs
Forward Transconductance
14
S
V
DS
= 50V, I
D
= 8.4A
25
A
V
DS
= 150V, V
GS
= 0V
250
V
DS
= 120V, V
GS
= 0V, T
J
= 150C
Gate-to-Source Forward Leakage
100
nA
V
GS
= 16V
Gate-to-Source Reverse Leakage
-100
V
GS
= -16V
Q
g
Total Gate Charge
140
I
D
= 8.4A
Q
gs
Gate-to-Source Charge
9.5
nC
V
DS
= 120V
Q
gd
Gate-to-Drain ("Miller") Charge
53
V
GS
= 10V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time
8.3
V
DD
= 75V
t
r
Rise Time
20
ns
I
D
= 8.4A
t
d(off)
Turn-Off Delay Time
110
R
G
= 6.2
,
V
GS
= 10V
t
f
Fall Time
53
R
D
= 8.9
,
See Fig. 10
Between lead,
6mm (0.25in.)
from package
and center of die contact
C
iss
Input Capacitance
1600
V
GS
= 0V
C
oss
Output Capacitance
290
pF
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
150
= 1.0MHz, See Fig. 5
nH
I
GSS
S
D
G
L
S
Internal Source Inductance
7.5
R
DS(on)
Static Drain-to-Source On-Resistance
L
D
Internal Drain Inductance
4.5
I
DSS
Drain-to-Source Leakage Current
IRLI3615
www.irf.com
3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
1
10
100
0.1
1
10
100
20s PULSE WIDTH
T = 25 C
J
TOP
BOTTOM
VGS
15V
10V
7.0V
5.5V
4.5V
4.0V
3.5V
2.7V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
2.7V
1
10
100
0.1
1
10
100
20s PULSE WIDTH
T = 175 C
J
TOP
BOTTOM
VGS
15V
10V
7.0V
5.5V
4.5V
4.0V
3.5V
2.7V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
2.7V
1
10
100
2.0
3.0
4.0
5.0
6.0
7.0
V = 50V
20s PULSE WIDTH
DS
V , Gate-to-Source Voltage (V)
I , Drain-to-Source Current (A)
GS
D
T = 25 C
J
T = 175 C
J
-60 -40 -20
0
20
40
60
80 100 120 140 160 180
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
V
=
I =
GS
D
10V
14A
IRLI3615
4
www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
100000
C, Capacitance(pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
0
20
40
60
80
100
120
140
0
4
8
12
16
20
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
FOR TEST CIRCUIT
SEE FIGURE
I =
D
13
8.4A
V
= 30V
DS
V
= 75V
DS
V
= 120V
DS
0.1
1
10
100
0.2
0.4
0.6
0.8
1.0
1.2
1.4
V ,Source-to-Drain Voltage (V)
I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 25 C
J
T = 175 C
J
1
10
100
1000
VDS , Drain-toSource Voltage (V)
0.1
1
10
100
1000
I D
, Drain-to-Source Current (A)
Tc = 25C
Tj = 175C
Single Pulse
1ms
1
0ms
OPERATION IN THIS AREA LIMITED
BY RDS(on)
100s
IRLI3615
www.irf.com
5
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
V
DS
Pulse Width
1
s
Duty Factor
0.1 %
R
D
V
GS
R
G
D.U.T.
10V
+
-
V
DD
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
25
50
75
100
125
150
175
0
2
4
6
8
10
12
14
T , Case Temperature ( C)
I , Drain Current (A)
C
D
0.01
0.1
1
10
0.00001
0.0001
0.001
0.01
0.1
1
10
Notes:
1. Duty factor D = t / t
2. Peak T = P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response
(Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)