ChipFind - документация

Электронный компонент: IRLIZ34N

Скачать:  PDF   ZIP
HEXFET
Power MOSFET
IRLIZ34N
PD - 9.1329B
8/25/97
V
DSS
= 55V
R
DS(on)
= 0.035
I
D
= 22A
S
D
G
TO-220 FULLPAK
l
Logic-Level Gate Drive
l
Advanced Process Technology
l
Isolated Package
l
High Voltage Isolation = 2.5KVRMS
l
Sink to Lead Creepage Dist. = 4.8mm
l
Fully Avalanche Rated
Parameter
Min.
Typ.
Max.
Units
R
JC
Junction-to-Case
4.1
R
JA
Junction-to-Ambient
65
C/W
Thermal Resistance
Parameter
Max.
Units
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
22
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ 10V
15
A
I
DM
Pulsed Drain Current
110
P
D
@T
C
= 25C
Power Dissipation
37
W
Linear Derating Factor
0.24
W/C
V
GS
Gate-to-Source Voltage
16
V
E
AS
Single Pulse Avalanche Energy
110
mJ
I
AR
Avalanche Current
16
A
E
AR
Repetitive Avalanche Energy
3.7
mJ
dv/dt
Peak Diode Recovery dv/dt
5.0
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
C
Soldering Temperature, for 10 seconds
300 (1.6mm from case)
Mounting torque, 6-32 or M3 screw.
10 lbfin (1.1Nm)
Absolute Maximum Ratings
Description
Fifth Generation HEXFETs from International Rectifier
utilize advanced processing techniques to achieve the
lowest possible on-resistance per silicon area. This benefit,
combined with the fast switching speed and ruggedized
device design that HEXFET Power MOSFETs are well
known for, provides the designer with an extremely efficient
device for use in a wide variety of applications.
The TO-220 Fullpak eliminates the need for additional
insulating hardware in commercial-industrial applications.
The moulding compound used provides a high isolation
capability and a low thermal resistance between the tab
and external heatsink. This isolation is equivalent to using
a 100 micron mica barrier with standard TO-220 product.
The Fullpak is mounted to a heatsink using a single clip or
by a single screw fixing.
IRLIZ34N
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
55
V
V
GS
= 0V, I
D
= 250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
0.065
V/C
Reference to 25C, I
D
= 1mA
0.035
V
GS
= 10V, I
D
= 12A
0.046
V
GS
= 5.0V, I
D
= 12A
0.060
V
GS
= 4.0V, I
D
= 10A
V
GS(th)
Gate Threshold Voltage
1.0
2.0
V
V
DS
= V
GS
, I
D
= 250A
g
fs
Forward Transconductance
11
S
V
DS
= 25V, I
D
= 16A
25
V
DS
= 55V, V
GS
= 0V
250
V
DS
= 44V, V
GS
= 0V, T
J
= 150C
Gate-to-Source Forward Leakage
100
V
GS
= 16V
Gate-to-Source Reverse Leakage
-100
V
GS
= -16V
Q
g
Total Gate Charge
25
I
D
= 16A
Q
gs
Gate-to-Source Charge
5.2
nC
V
DS
= 44V
Q
gd
Gate-to-Drain ("Miller") Charge
14
V
GS
= 5.0V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time
8.9
V
DD
= 28V
t
r
Rise Time
100
I
D
= 16A
t
d(off)
Turn-Off Delay Time
29
R
G
= 6.5
,
V
GS
= 5.0V
t
f
Fall Time
21
R
D
= 1.8
,
See Fig. 10
Between lead,
6mm (0.25in.)
from package
and center of die contact
C
iss
Input Capacitance
880
V
GS
= 0V
C
oss
Output Capacitance
220
pF
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
94
= 1.0MHz, See Fig. 5
C
Drain to Sink Capacitance
12
= 1.0MHz
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
S
D
G
I
DSS
Drain-to-Source Leakage Current
I
GSS
L
S
Internal Source Inductance
7.5
L
D
Internal Drain Inductance
4.5
A
nA
ns
nH
R
DS(on)
Static Drain-to-Source On-Resistance
Notes:
Uses IRLZ34N data and test conditions
V
DD
= 25V, starting T
J
= 25C, L = 610H
R
G
= 25
, I
AS
= 16A. (See Figure 12)
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
Pulse width
300s; duty cycle
2%.
t=60s, =60Hz
I
SD
16A, di/dt
270A/s, V
DD
V
(BR)DSS
,
T
J
175C
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
1.3
V
T
J
= 25C, I
S
= 12A, V
GS
= 0V
t
rr
Reverse Recovery Time
76
110
ns
T
J
= 25C, I
F
= 16A
Q
rr
Reverse RecoveryCharge
190
290
nC
di/dt = 100A/s
Source-Drain Ratings and Characteristics
A
110
22
S
D
G
IRLIZ34N
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
0.001
0.01
0.1
1
10
100
1000
10000
0.1
1
10
100
I
, D
r
a
i
n
-
to
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(
A
)
D
V , Dra in -to-So urce V oltag e (V)
D S
2 0 s PU LS E W ID TH
T = 2 5C
A
VGS
TOP 15V
12V
10V
8.0V
6.0V
4.0V
3.0V
BOTT OM 2.0V
2.0 V
J
0.001
0.01
0.1
1
10
100
1000
10000
0.1
1
10
100
I
, D
r
a
i
n
-
to
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(
A
)
D
V , Drain -to -S o urce Vo lta ge (V )
D S
VGS
TOP 7.50V
5.00V
4.00V
3.50V
3.00V
2.75V
2.50V
BOTTOM 2.25V
A
2 0 s PU L SE W ID TH
T = 1 75 C
2 .0V
J
0 . 0 1
0 . 1
1
1 0
1 0 0
1 0 0 0
2
3
4
5
6
7
8
9
1 0
T = 2 5 C
J
G S
V , G a te -to -S o u rce V olta ge (V )
D
I
, D
r
a
i
n
-
to
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(
A
)
T = 1 7 5 C
J
A
V = 2 5 V
2 0 s PU L SE W ID TH
DS
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
- 6 0
- 4 0
- 2 0
0
2 0
4 0
6 0
8 0
1 0 0 1 2 0 1 4 0 1 6 0 1 8 0
J
T , Ju nctio n T emp eratu re (C)
R
,
D
r
a
i
n
-
to
-
S
o
u
r
c
e
O
n
R
e
s
i
s
t
a
n
c
e
D
S
(
on)
(
N
o
r
m
a
l
i
z
ed)
V = 10 V
G S
A
I = 27 A
D
IRLIZ34N
Fig 7. Typical Source-Drain Diode
Forward Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
0
200
400
600
800
1000
1200
1400
1
10
100
C
,
C
apa
c
i
t
anc
e
(
p
F
)
D S
V , Drain-to-Source Voltag e (V )
A
V = 0 V, f = 1 MH z
C = C + C , C SH O R TED
C = C
C = C + C
G S
iss gs gd d s
rs s gd
oss ds gd
C
is s
C
o s s
C
rs s
0
3
6
9
12
15
0
4
8
12
16
20
24
28
32
Q , To ta l Ga te Cha rge (n C)
G
V


,
G
a
t
e
-
t
o-
S
o
u
r
c
e

V
o
l
t
ag
e (
V
)
GS
A
FOR TE ST C IR CU I T
SE E FIG U RE 13
I = 1 6A
V = 44 V
V = 28 V
D
D S
D S
1
1 0
1 0 0
1 0 0 0
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4
1 . 6
1 . 8
2 . 0
T = 2 5C
J
V = 0 V
G S
V , S o urce-to -Drain Vo lta ge (V )
I
, R
e
v
e
r
s
e
D
r
a
i
n
C
u
r
r
e
n
t
(
A
)
S D
SD
A
T = 17 5C
J
1
10
100
1000
1
10
100
V , Dra in -to-So urce Vo ltag e (V)
D S
I
,
D
r
ai
n C
u
r
r
en
t

(
A
)
OPE R ATIO N IN TH IS A RE A LI MI TE D
BY R
D
D S(o n)
10 s
1 00s
1m s
10m s
A
T = 25 C
T = 17 5C
S ing le Pulse
C
J
IRLIZ34N
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
V
DS
Pulse Width
1
s
Duty Factor
0.1 %
R
D
V
GS
R
G
D.U.T.
5.0V
+
-
V
DD
25
50
75
100
125
150
175
0
5
10
15
20
25
T , Case Temperature
( C)
I , Drain Current (A)
C
D
0.01
0.1
1
10
0.00001
0.0001
0.001
0.01
0.1
1
Notes:
1. Duty factor D =
t / t
2. Peak T = P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response
(Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)