ChipFind - документация

Электронный компонент: IRLR014N

Скачать:  PDF   ZIP
IRLR/U014N
HEXFET
Power MOSFET
S
D
G
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
5.3
R
JA
Case-to-Ambient (PCB mount)**
50
C/W
R
JA
Junction-to-Ambient
110
Thermal Resistance
V
DSS
= 55V
R
DS(on)
= 0.14
I
D
= 10A
Description
5/4/99
www.irf.com
1
D-Pak
TO-252AA
I-Pak
TO-251AA
Logic-Level Gate Drive
Surface Mount (IRLR024N)
Straight Lead (IRLU024N)
Advanced Process Technology
Fast Switching
Fully Avalanche Rated
Fifth Generation HEXFETs from International Rectifier utilize advanced
processing techniques to achieve the lowest possible on-resistance per
silicon area. This benefit, combined with the fast switching speed and
ruggedized device design that HEXFET Power MOSFETs are well known for,
provides the designer with an extremely efficient device for use in a wide
variety of applications.
The D-PAK is designed for surface mounting using vapor phase, infrared, or
wave soldering techniques. The straight lead version (IRFU series) is for
through-hole mounting applications. Power dissipation levels up to 1.5 watts
are possible in typical surface mount applications.
** When mounted on 1" square PCB (FR-4 or G-10 Material ) .
For recommended footprint and soldering techniques refer to application note #AN-994
Parameter
Max.
Units
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
10
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ 10V
7.1
A
I
DM
Pulsed Drain Current
40
P
D
@T
C
= 25C
Power Dissipation
28
W
Linear Derating Factor
0.2
W/C
V
GS
Gate-to-Source Voltage
16
V
E
AS
Single Pulse Avalanche Energy
35
mJ
I
AR
Avalanche Current
6.0
A
E
AR
Repetitive Avalanche Energy
2.8
mJ
dv/dt
Peak Diode Recovery dv/dt
5.0
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
C
Absolute Maximum Ratings
PD- 94350
IRLR/U014N
2
www.irf.com
S
D
G
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
1.3
V
T
J
= 25C, I
S
= 6A, V
GS
= 0V
t
rr
Reverse Recovery Time
37
56
nS
T
J
= 25C, I
F
= 6A
Q
rr
Reverse RecoveryCharge
48
71
nC
di/dt = 100A/s
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Source-Drain Ratings and Characteristics
10
40
A
Starting T
J
= 25C, L = 1.96mH
R
G
= 25
, I
AS
= 6A. (See Figure 12)
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
Pulse width
300s; duty cycle
2%.
This is applied for I-PAK, L
S
of D-PAK is measured between
lead and center of die contact
I
SD
6.0A, di/dt
210A/s, V
DD
V
(BR)DSS
,
T
J
175C
Notes:
Parameter
Min.
Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
55
V
V
GS
= 0V, I
D
= 250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
0.056
V/C
Reference to 25C, I
D
= 1mA
0.14
V
GS
= 10V, I
D
= 6A
0.21
V
GS
= 4.5V, I
D
= 5A
V
GS(th)
Gate Threshold Voltage
1.0
V
V
DS
= V
GS
, I
D
= 250A
g
fs
Forward Transconductance
3.1
S
V
DS
= 25V, I
D
= 6A
25
A
V
DS
= 55V, V
GS
= 0V
250
V
DS
= 55V, V
GS
= 0V, T
J
= 150C
Gate-to-Source Forward Leakage
100
nA
V
GS
= 16V
Gate-to-Source Reverse Leakage
-100
V
GS
= -16V
Q
g
Total Gate Charge
7.9
I
D
= 6A
Q
gs
Gate-to-Source Charge
1.4
nC
V
DS
= 44V
Q
gd
Gate-to-Drain ("Miller") Charge
4.4
V
GS
= 5.0V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time
6.5
V
DD
= 28V
t
r
Rise Time
47
ns
I
D
= 6A
t
d(off)
Turn-Off Delay Time
12
R
G
= 6.2
,
V
GS
= 5.0V
t
f
Fall Time
23
R
D
= 4.5
,
See Fig. 10
Between lead,
6mm (0.25in.)
from package
and center of die contact
C
iss
Input Capacitance
265
V
GS
= 0V
C
oss
Output Capacitance
80
pF
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
38
= 1.0MHz, See Fig. 5
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
nH
I
GSS
S
D
G
L
S
Internal Source Inductance
7.5
R
DS(on)
Static Drain-to-Source On-Resistance
L
D
Internal Drain Inductance
4.5
I
DSS
Drain-to-Source Leakage Current
IRLR/U014N
www.irf.com
3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
0.1
1
10
100
2.0
4.0
6.0
8.0
10.0
V
= 50V
20s PULSE WIDTH
DS
V
, Gate-to-Source Voltage (V)
I
,
Drain-to-Source
Current
(A)
GS
D
T = 25 C
J
T = 175 C
J
0.1
1
10
100
0.1
1
10
100
20s PULSE WIDTH
T = 25 C
J
TOP
BOTTOM
VGS
15V
12V
10V
7.0V
5.0V
4.5V
2.7V
2.0V
V
, Drain-to-Source Voltage (V)
I
,
Drain-to-Source
Current
(A)
DS
D
2.5V
0.1
1
10
100
0.1
1
10
100
20s PULSE WIDTH
T = 175 C
J
TOP
BOTTOM
VGS
15V
12V
10V
7.0V
5.0V
4.5V
2.7V
2.0V
V
, Drain-to-Source Voltage (V)
I
,
Drai
n-to-Source
Current
(A)
DS
D
2.5V
-60 -40 -20
0
20 40 60 80 100 120 140 160 180
0.0
0.5
1.0
1.5
2.0
2.5
T , Junction Temperature ( C)
R
,
Drain-to-Source
On
Resistance
(Normalized)
J
D
S
(
on)
V
=
I =
GS
D
10V
10A
VGS
TOP 15V
10V
5.0V
4.5V
3.5V
3.0V
2.7V
BOTTOM 2.5V
VGS
TOP 15V
10V
5.0V
4.5V
3.5V
3.0V
2.7V
BOTTOM 2.5V
IRLR/U014N
4
www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
0.1
1
10
100
0.2
0.6
1.0
1.4
1.8
V
,Source-to-Drain Voltage (V)
I
,
Reverse
D
rain
Current
(A)
SD
SD
V
= 0 V
GS
T = 25 C
J
T = 175 C
J
0.1
1
10
100
1000
1
10
100
OPERATION IN THIS AREA LIMITED
BY R
DS(on)
Single Pulse
T
T
= 175 C
= 25 C
J
C
V
, Drain-to-Source Voltage (V)
I
,
Drain
C
urrent
(A)
I
,
Drain
C
urrent
(A)
DS
D
10us
100us
1ms
10ms
0
2
4
6
8
10
0
5
10
15
Q , Total Gate Charge (nC)
V
,
Gate-to-Source
Voltage
(V)
G
GS
FOR TEST CIRCUIT
SEE FIGURE
I =
D
13
6 A
V
= 27V
DS
V
= 44V
DS
1
10
100
0
100
200
300
400
500
V
, Drain-to-Source Voltage (V)
C,
Capacitance
(
pF)
DS
V
C
C
C
=
=
=
=
0V,
C
C
C
f = 1MHz
+ C
+ C
C
SHORTED
GS
iss
gs
gd ,
ds
rss
gd
oss
ds
gd
C
iss
C
oss
C
rss
IRLR/U014N
www.irf.com
5
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
V
DS
Pulse Width
1
s
Duty Factor
0.1 %
R
D
V
GS
R
G
D.U.T.
10V
+
-
V
DD
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
0.1
1
10
0.00001
0.0001
0.001
0.01
0.1
1
Notes:
1. Duty factor D = t / t
2. Peak T = P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Ther
m
a
l
R
esponse
(Z
)
1
th
J
C
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
25
50
75
100
125
150
175
0.0
2.0
4.0
6.0
8.0
10.0
T , Case Temperature ( C)
I
,
Drain
C
urrent
(A)
C
D