ChipFind - документация

Электронный компонент: IRLZ34N

Скачать:  PDF   ZIP
HEXFET
Power MOSFET
IRLZ34N
PD - 9.1307B
Fifth Generation HEXFETs from International Rectifier
utilize advanced processing techniques to achieve the
lowest possible on-resistance per silicon area. This benefit,
combined with the fast switching speed and ruggedized
device design that HEXFET Power MOSFETs are well
known for, provides the designer with an extremely efficient
device for use in a wide variety of applications.
The TO-220 package is universally preferred for all
commercial-industrial applications at power dissipation
levels to approximately 50 watts. The low thermal resistance
and low package cost of the TO-220 contribute to its wide
acceptance throughout the industry.
l
Logic-Level Gate Drive
l
Advanced Process Technology
l
Dynamic dv/dt Rating
l
175C Operating Temperature
l
Fast Switching
l
Fully Avalanche Rated
Description
V
DSS
= 55V
R
DS(on)
= 0.035
I
D
= 30A
S
D
G
TO-220AB
8/25/97
Parameter
Min.
Typ.
Max.
Units
R
JC
Junction-to-Case
2.2
R
CS
Case-to-Sink, Flat, Greased Surface
0.50
C/W
R
JA
Junction-to-Ambient
62
Thermal Resistance
Parameter
Max.
Units
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
30
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ 10V
21
A
I
DM
Pulsed Drain Current
110
P
D
@T
C
= 25C
Power Dissipation
68
W
Linear Derating Factor
0.45
W/C
V
GS
Gate-to-Source Voltage
16
V
E
AS
Single Pulse Avalanche Energy
110
mJ
I
AR
Avalanche Current
16
A
E
AR
Repetitive Avalanche Energy
6.8
mJ
dv/dt
Peak Diode Recovery dv/dt
5.0
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
C
Soldering Temperature, for 10 seconds
300 (1.6mm from case)
Mounting torque, 6-32 or M3 screw.
10 lbfin (1.1Nm)
Absolute Maximum Ratings
IRLZ34N
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
55
V
V
GS
= 0V, I
D
= 250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
0.065
V/C
Reference to 25C, I
D
= 1mA
0.035
V
GS
= 10V, I
D
= 16A
V
GS
= 5.0V, I
D
= 16A
0.060
V
GS
= 4.0V, I
D
= 14A
V
GS(th)
Gate Threshold Voltage
1.0
2.0
V
V
DS
= V
GS
, I
D
= 250A
g
fs
Forward Transconductance
11
S
V
DS
= 25V, I
D
= 16A
25
V
DS
= 55V, V
GS
= 0V
250
V
DS
= 44V, V
GS
= 0V, T
J
= 150C
Gate-to-Source Forward Leakage
100
V
GS
= 16V
Gate-to-Source Reverse Leakage
-100
V
GS
= -16V
Q
g
Total Gate Charge
25
I
D
= 16A
Q
gs
Gate-to-Source Charge
5.2
nC
V
DS
= 44V
Q
gd
Gate-to-Drain ("Miller") Charge
14
V
GS
= 5.0V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time
8.9
V
DD
= 28V
t
r
Rise Time
100
I
D
= 16A
t
d(off)
Turn-Off Delay Time
21
R
G
= 6.5
,
V
GS
= 5.0V
t
f
Fall Time
29
R
D
= 1.8
,
See Fig. 10
Between lead,
6mm (0.25in.)
from package
and center of die contact
C
iss
Input Capacitance
880
V
GS
= 0V
C
oss
Output Capacitance
220
pF
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
94
= 1.0MHz, See Fig. 5
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
S
D
G
I
GSS
L
S
Internal Source Inductance
7.5
L
D
Internal Drain Inductance
4.5
A
nA
ns
nH
R
DS(on)
Static Drain-to-Source On-Resistance
0.046
I
DSS
Drain-to-Source Leakage Current
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
1.3
V
T
J
= 25C, I
S
= 16A, V
GS
= 0V
t
rr
Reverse Recovery Time
76
110
ns
T
J
= 25C, I
F
= 16A
Q
rr
Reverse RecoveryCharge
190
290
nC
di/dt = 100A/s
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Source-Drain Ratings and Characteristics
A
110
30
S
D
G
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
I
SD
16A, di/dt
270A/s, V
DD
V
(BR)DSS
,
T
J
175C
Notes:
V
DD
= 25V, starting T
J
= 25C, L = 610H
R
G
= 25
, I
AS
= 16A. (See Figure 12)
Pulse width
300s; duty cycle
2%.
IRLZ34N
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
0.1
1
10
100
1000
0.1
1
10
100
I
, D
r
a
i
n
-
to
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(
A
)
D
V , Dra in-to-So urce V olta ge (V )
D S
A
20 s PU LSE W ID TH
T = 1 75C
VGS
TOP 15V
12V
10V
8.0V
6.0V
4.0V
3.0V
BOTT OM 2.5V
2 .5V
J
0.1
1
10
100
1000
0.1
1
10
100
I
, D
r
a
i
n
-
to
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(
A
)
D
V , Drain -to -S ou rce V oltag e (V)
D S
A
2 0 s PU LSE W ID TH
T = 25 C
J
VGS
TOP 15V
12V
10V
8.0V
6.0V
4.0V
3.0V
BOT TOM 2.5V
2.5 V
0 . 1
1
1 0
1 0 0
1 0 0 0
2
3
4
5
6
7
8
9
1 0
T = 2 5 C
J
G S
V , Ga te -to -S o u rce V o l ta g e (V )
D
I
, D
r
a
i
n
-
to
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(
A
)
T = 1 7 5 C
J
A
V = 2 5 V
2 0 s P U L SE W ID TH
DS
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
- 6 0
- 4 0
- 2 0
0
2 0
4 0
6 0
8 0
1 0 0 1 2 0 1 4 0 1 6 0 1 8 0
J
T , Ju nctio n T emp eratu re (C)
R
,
D
r
a
i
n
-
to
-
S
o
u
r
c
e
O
n
R
e
s
i
s
t
a
n
c
e
D
S
(
on)
(
N
o
r
m
a
l
i
z
ed)
V = 10 V
G S
A
I = 27 A
D
IRLZ34N
Fig 7. Typical Source-Drain Diode
Forward Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
0
200
400
600
800
1000
1200
1400
1
10
100
C
,
C
a
pac
i
t
anc
e (
p
F
)
D S
V , Drai n-to -So urce V oltag e (V)
A
V = 0V , f = 1MH z
C = C + C , C SH OR TED
C = C
C = C + C
G S
is s gs g d ds
rs s g d
os s ds gd
C
is s
C
o s s
C
rs s
0
3
6
9
12
15
0
4
8
12
16
20
24
28
32
Q , T otal Ga te C harg e (nC )
G
V


,
G
a
t
e
-
t
o-
S
o
u
r
c
e

V
o
l
t
ag
e (
V
)
GS
A
FO R TEST CI R CU I T
SEE FIG UR E 13
I = 16A
V = 44V
V = 28V
D
DS
DS
1
1 0
1 0 0
1 0 0 0
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4
1 . 6
1 . 8
2 . 0
T = 2 5C
J
V = 0 V
G S
V , S o urce-to -Drain Vo lta ge (V )
I
, R
e
v
e
r
s
e
D
r
a
i
n
C
u
r
r
e
n
t
(
A
)
S D
SD
A
T = 17 5C
J
1
10
100
1000
1
10
100
V , Dra in -to-So urce Vo ltag e (V)
D S
I ,
D
r
a
i
n
C
u
r
r
e
n
t
(
A
)
OPE R ATIO N IN TH IS A RE A LI MI TE D
BY R
D
D S(o n)
10 s
1 00s
1m s
10m s
A
T = 25 C
T = 17 5C
S ing le Pulse
C
J
IRLZ34N
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
V
DS
Pulse Width
1
s
Duty Factor
0.1 %
R
D
V
GS
R
G
D.U.T.
5.0V
+
-
V
DD
Fig 9. Maximum Drain Current Vs.
Case Temperature
25
50
75
100
125
150
175
0
10
20
30
40
T , Case Temperature
( C)
I , Drain Current (A)
C
D
0.01
0.1
1
10
0.00001
0.0001
0.001
0.01
0.1
Notes:
1. Duty factor D = t / t
2. Peak T = P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response
(Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)