ChipFind - документация

Электронный компонент: 24C08B/16B

Скачать:  PDF   ZIP

Document Outline

1999 Microchip Technology Inc.
DS21081F-page 1
FEATURES
Single supply with operation from 4.5-5.5V
Low power CMOS technology
- 1 mA active current typical
- 10
A standby current typical at 5.5V
Organized as 4 or 8 blocks of 256 bytes
(4 x 256 x 8) or (8 x 256 x 8)
2-wire serial interface bus, I
2
C
TM
compatible
Schmitt trigger, filtered inputs for noise suppres-
sion
Output slope control to eliminate ground bounce
100 kHz compatibility
Self-timed write cycle (including auto-erase)
Page-write buffer for up to 16 bytes
2 ms typical write cycle time for page-write
Hardware write protect for entire memory
Can be operated as a serial ROM
ESD protection > 4,000V
1,000,000 ERASE/WRITE cycles guaranteed
Data retention > 200 years
8-pin DIP, 8-lead or 14-lead SOIC packages
Available for extended temperature range
DESCRIPTION
The Microchip Technology Inc. 24C08B/16B is an 8K or
16K bit Electrically Erasable PROM intended for use in
extended/automotive temperature ranges. The device
is organized as four or eight blocks of 256 x 8-bit mem-
ory with a 2-wire serial interface. The 24C08B/16B also
has a page-write capability for up to 16 bytes of data.
The 24C08B/16B is available in the standard 8-pin DIP
and both 8-lead and 14-lead surface mount SOIC pack-
ages.
- Commercial (C):
0C to
+70C
- Industrial (I):
-40C to
+85C
- Automotive (E):
-40C to +125C
PACKAGE TYPES
BLOCK DIAGRAM
NC
SS
CC
A0
A1
NC
A2
NC
V
1
2
3
4
5
6
7
14
13
12
NC
SCL
SDA
NC
9
8
11
10
WP
V
NC
14-lead
SOIC
24C08B/16B
24C08B/16B
A0
A1
A2
V
SS
1
2
3
4
8
7
6
5
V
CC
WP
SCL
SDA
24C08B/16B
A0
A1
A2
V
SS
1
2
3
4
8
7
6
5
V
CC
WP
SCL
SDA
PDIP
8-lead
SOIC
HV GENERATOR
EEPROM
ARRAY
PAGE LATCHES
YDEC
XDEC
SENSE AMP
R/W CONTROL
MEMORY
CONTROL
LOGIC
I/O
CONTROL
LOGIC
WP
SDA
SCL
V
CC
V
SS
24C08B/16B
8K/16K 5.0V I
2
C
TM
Serial EEPROMs
I
2
C is a trademark of Philips Corporation.
24C08B/16B
DS21081F-page 2
1999 Microchip Technology Inc.
1.0
ELECTRICAL CHARACTERISTICS
1.1
Maximum Ratings*
V
CC
...................................................................................7.0V
All inputs and outputs w.r.t. V
SS
................-0.6V to V
CC
+1.0V
Storage temperature ..................................... -65C to +150C
Ambient temp. with power applied................. -65C to +125C
Soldering temperature of leads (10 seconds) ............. +300C
ESD protection on all pins
..................................................
4 kV
*Notice:
Stresses above those listed under "Maximum ratings"
may cause permanent damage to the device. This is a stress rat-
ing only and functional operation of the device at those or any
other conditions above those indicated in the operational listings
of this specification is not implied. Exposure to maximum rating
conditions for extended periods may affect device reliability.
TABLE 1-1:
PIN FUNCTION TABLE
Name
Function
V
SS
Ground
SDA
Serial Address/Data I/O
SCL Serial
Clock
WP
Write Protect Input
V
CC
+4.5V to 5.5V Power Supply
A0, A1, A2
No Internal Connection
TABLE 1-2:
DC CHARACTERISTICS
FIGURE 1-1:
BUS TIMING START/STOP
V
CC
= +4.5V to +5.5V
Commercial (C): Tamb = 0C to +70C
Industrial (I):
Tamb = -40C to +85C
Automotive (E):
Tamb = -40C to +125C
Parameter
Symbol
Min
Max
Units
Conditions
WP, SCL and SDA pins:
High level input voltage
V
IH
.7 Vcc
--
V
Low Level input voltage
V
IL
--
.3 V
CC
V
Hysteresis of Schmitt trigger
inputs
V
HYS
.05 Vcc
--
V
(Note)
Low level output voltage
V
OL
--
.40
V
I
OL
= 3.0 mA, V
CC
=4.5V
Input leakage current
I
LI
-10
10
A
V
IN
=.1V to V
CC
Output leakage current
I
LO
-10
10
A
V
OUT
= .1V to V
CC
Pin capacitance
(all inputs/outputs)
C
IN
, C
OUT
--
10
pF
V
CC
= 5.0V (Note 1)
Tamb = 25C, F
CLK
=1 MHz
Operating current
I
CC
write
I
CC
read
--
--
3
1
mA
mA
V
CC
= 5.5V, SCL = 400 kHz
Standby current
I
CCS
--
100
A
V
CC
= 5.5V, SDA = SCL = V
CC
WP = V
SS
Note:
This parameter is periodically sampled and not 100% tested.
T
SU
:
STA
T
HD
:
STA
V
HYS
T
SU
:
STO
START
STOP
SCL
SDA
1999 Microchip Technology Inc.
DS21081F-page 3
24C08B/16B
TABLE 1-3:
AC CHARACTERISTICS
FIGURE 1-2:
BUS TIMING DATA
Parameter
Symbol
Min
Max
Units
Remarks
Clock frequency
F
CLK
--
100
kHz
Clock high time
T
HIGH
4000
--
ns
Clock low time
T
LOW
4700
--
ns
SDA and SCL rise time
T
R
--
1000
ns
(Note1)
SDA and SCL fall time
T
F
--
300
ns
(Note 1)
START condition hold time
T
HD
:
STA
4000
--
ns
After this period the first clock
pulse is generated
START condition setup
time
T
SU
:
STA
4700
--
ns
Only relevant for repeated
START condition
Data input hold time
T
HD
:
DAT
0
--
ns
Data input setup time
T
SU
:
DAT
250
--
ns
STOP condition setup time
T
SU
:
STO
4000
--
ns
Output valid from clock
T
AA
--
3500
ns
(Note 2)
Bus free time
T
BUF
4700
--
ns
Time the bus must be free before
a new transmission can start
Output fall time from V
IH
min to V
IL
max
T
OF
--
250
ns
(Note 1), C
B
100 pF
Input filter spike suppres-
sion (SDA and SCL pins)
T
SP
--
50
ns
(Note 3)
Write cycle time
T
WR
--
10
ms
Byte or Page mode
Endurance
--
1M
--
cycles
25C, V
CC
= 5.0V, Block Mode
(Note 4)
Note 1: Not 100% tested. C
B
= total capacitance of one bus line in pF.
2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region
(minimum 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.
3: The combined T
SP
and V
HYS
specifications are due to new Schmitt trigger inputs which provide improved
noise and spike suppression. This eliminates the need for a T
I
specification.
4: This parameter is not tested but guaranteed by characterization. For endurance estimates in a specific appli-
cation, please consult the Total Endurance Model which can be obtained on our website.
T
SU
:
STA
T
F
T
LOW
T
HIGH
T
R
T
HD
:
DAT
T
SU
:
DAT
T
SU
:
STO
T
HD
:
STA
T
BUF
T
AA
T
AA
T
SP
T
HD
:
STA
SCL
SDA
IN
SDA
OUT
24C08B/16B
DS21081F-page 4
1999 Microchip Technology Inc.
2.0
FUNCTIONAL DESCRIPTION
The 24C08B/16B supports a Bi-directional 2-wire bus
and data transmission protocol. A device that sends
data onto the bus is defined as transmitter, and a
device receiving data as receiver. The bus has to be
controlled by a master device which generates the
serial clock (SCL), controls the bus access, and gener-
ates the START and STOP conditions, while the
24C08B/16B works as slave. Both, master and slave
can operate as transmitter or receiver but the master
device determines which mode is activated.
3.0
BUS CHARACTERISTICS
The following bus protocol has been defined:
Data transfer may be initiated only when the bus
is not busy.
During data transfer, the data line must remain
stable whenever the clock line is HIGH. Changes
in the data line while the clock line is HIGH will be
interpreted as a START or STOP condition.
Accordingly, the following bus conditions have been
defined (Figure 3-1).
3.1
Bus not Busy (A)
Both data and clock lines remain HIGH.
3.2
Start Data Transfer (B)
A HIGH to LOW transition of the SDA line while the
clock (SCL) is HIGH determines a START condition.
All commands must be preceded by a START condi-
tion.
3.3
Stop Data Transfer (C)
A LOW to HIGH transition of the SDA line while the
clock (SCL) is HIGH determines a STOP condition. All
operations must be ended with a STOP condition.
3.4
Data Valid (D)
The state of the data line represents valid data when,
after a START condition, the data line is stable for the
duration of the HIGH period of the clock signal.
The data on the line must be changed during the LOW
period of the clock signal. There is one clock pulse per
bit of data.
Each data transfer is initiated with a START condition
and terminated with a STOP condition. The number of
the data bytes transferred between the START and
STOP conditions is determined by the master device
and is theoretically unlimited, although only the last 16
will be stored when doing a write operation. When an
overwrite does occur it will replace data in a first in first
out fashion.
3.5
Acknowledge
Each receiving device, when addressed, is obliged to
generate an acknowledge after the reception of each
byte. The master device must generate an extra clock
pulse which is associated with this acknowledge bit.
The device that acknowledges, has to pull down the
SDA line during the acknowledge clock pulse in such a
way that the SDA line is stable LOW during the HIGH
period of the acknowledge related clock pulse. Of
course, setup and hold times must be taken into
account. During reads, a master must signal an end of
data to the slave by NOT generating an acknowledge
bit on the last byte that has been clocked out of the
slave. In this case, the slave (24C08B/16B) will leave
the data line HIGH to enable the master to generate the
STOP condition.
Note:
The 24C08B/16B does not generate any
acknowledge bits if an internal program-
ming cycle is in progress.
FIGURE 3-1:
DATA TRANSFER SEQUENCE ON THE SERIAL BUS
SCL
SDA
(A)
(B)
(D)
(D)
(A)
(C)
START
CONDITION
ADDRESS OR
ACKNOWLEDGE
VALID
DATA
ALLOWED
TO CHANGE
STOP
CONDITION
1999 Microchip Technology Inc.
DS21081F-page 5
24C08B/16B
3.6
Device Addressing
A control byte is the first byte received following the
start condition from the master device. The control byte
consists of a 4-bit control code, for the 24C08B/16B
this is set as 1010 binary for read and write operations.
The next three bits of the control byte are the block
select bits (B2, B1, B0). They are used by the master
device to select which of the eight 256 word blocks of
memory are to be accessed. These bits are in effect the
three most significant bits of the word address.
The last bit of the control byte defines the operation to
be performed. When set to one a read operation is
selected, when set to zero a write operation is selected.
Following the start condition, the 24C08B/16B monitors
the SDA bus checking the device type identifier being
transmitted, upon a 1010 code the slave device outputs
an acknowledge signal on the SDA line. Depending on
the state of the R/W bit, the 24C08B/16B will select a
read or write operation.
FIGURE 3-2:
CONTROL BYTE
ALLOCATION
Operation
Control
Code
Block Select
R/W
Read
1010
Block Address
1
Write
1010
Block Address
0
SLAVE ADDRESS
1
0
1
0
B2
B1
B0
R/W
A
START
READ/WRITE
4.0
WRITE OPERATION
4.1
Byte Write
Following the start condition from the master, the
device code (4 bits), the block address (3 bits), and the
R/W bit which is a logic low is placed onto the bus by
the master transmitter. This indicates to the addressed
slave receiver that a byte with a word address will follow
after it has generated an acknowledge bit during the
ninth clock cycle. Therefore the next byte transmitted by
the master is the word address and will be written into
the address pointer of the 24C08B/16B. After receiving
another acknowledge signal from the 24C08B/16B the
master device will transmit the data word to be written
into the addressed memory location. The 24C08B/16B
acknowledges again and the master generates a stop
condition. This initiates the internal write cycle, and dur-
ing this time the 24C08B/16B will not generate
acknowledge signals (Figure 4-1).
4.2
Page Write
The write control byte, word address and the first data
byte are transmitted to the 24C08B/16B in the same
way as in a byte write. But instead of generating a stop
condition the master transmits up to 16 data bytes to
the 24C08B/16B which are temporarily stored in the
on-chip page buffer and will be written into the memory
after the master has transmitted a stop condition. After
the receipt of each word, the four lower order address
pointer bits are internally incremented by one. The
higher order seven bits of the word address remains
constant. If the master should transmit more than 16
words prior to generating the stop condition, the
address counter will roll over and the previously
received data will be overwritten. As with the byte write
operation, once the stop condition is received an inter-
nal write cycle will begin (Figure 4-2).
Note:
Page write operations are limited to writing
bytes within a single physical page, regard-
less of the number of bytes actually being
written. Physical page boundaries start at
addresses that are integer multiples of the
page buffer size (or page size) and end at
addresses that are integer multiples of
[page size - 1]. If a page write command
attempts to write across a physical page
boundary, the result is that the data wraps
around to the beginning of the current page
(overwriting data previously stored there),
instead of being written to the next page as
might be expected. It is therefore neces-
sary for the application software to prevent
page write operations that would attempt to
cross a page boundary.
24C08B/16B
DS21081F-page 6
1999 Microchip Technology Inc.
FIGURE 4-1:
BYTE WRITE
FIGURE 4-2:
PAGE WRITE
S
P
BUS ACTIVITY
MASTER
SDA LINE
BUS ACTIVITY
S
T
A
R
T
S
T
O
P
CONTROL
BYTE
WORD
ADDRESS
DATA
A
C
K
A
C
K
A
C
K
S
P
BUS ACTIVITY
MASTER
SDA LINE
BUS ACTIVITY
S
T
A
R
T
CONTROL
BYTE
WORD
ADDRESS (n)
DATA n
DATA n + 15
S
T
O
P
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
DATA n + 1
1999 Microchip Technology Inc.
DS21081F-page 7
24C08B/16B
5.0
ACKNOWLEDGE POLLING
Since the device will not acknowledge during a write
cycle, this can be used to determine when the cycle is
complete (this feature can be used to maximize bus
throughput). Once the stop condition for a write com-
mand has been issued from the master, the device ini-
tiates the internally timed write cycle. ACK polling can
be initiated immediately. This involves the master send-
ing a start condition followed by the control byte for a
write command (R/W = 0). If the device is still busy with
the write cycle, then no ACK will be returned. If the
cycle is complete, then the device will return the ACK
and the master can then proceed with the next read or
write command. See Figure 5-1 for flow diagram.
FIGURE 5-1:
ACKNOWLEDGE POLLING
FLOW
6.0
WRITE PROTECTION
The 24C08B/16B can be used as a serial ROM when
the WP pin is connected to V
CC
. Programming will be
inhibited and the entire memory will be write-protected.
Send
Write Command
Send Stop
Condition to
Initiate Write Cycle
Send Start
Send Control Byte
with R/W = 0
Did Device
Acknowledge
(ACK = 0)?
Next
Operation
NO
YES
7.0
READ OPERATION
Read operations are initiated in the same way as write
operations with the exception that the R/W bit of the
slave address is set to one. There are three basic types
of read operations: current address read, random
read, and sequential read.
7.1
Current Address Read
The 24C08B/16B contains an address counter that
maintains the address of the last word accessed, inter-
nally incremented by one. Therefore, if the previous
access (either a read or write operation) was to
address n, the next current address read operation
would access data from address n + 1. Upon receipt of
the slave address with R/W bit set to one,
the
24C08B/16B issues an acknowledge and transmits the
8-bit data word. The master will not acknowledge the
transfer but does generate a stop condition and the
24C08B/16B discontinues transmission (Figure 7-1).
7.2
Random Read
Random read operations allow the master to access
any memory location in a random manner. To perform
this type of read operation, first the word address must
be set. This is done by sending the word address to the
24C08B/16B as part of a write operation. After the word
address is sent, the master generates a start condition
following the acknowledge. This terminates the write
operation, but not before the internal address pointer is
set. Then the master issues the control byte again but
with the R/W bit set to a one. The 24C08B/16B will then
issue an acknowledge and transmits the 8-bit data
word. The master will not acknowledge the transfer but
does generate a stop condition and the 24C08B/16B
discontinues transmission (Figure 7-2).
7.3
Sequential Read
Sequential reads are initiated in the same way as a ran-
dom read except that after the 24C08B/16B transmits
the first data byte, the master issues an acknowledge
as opposed to a stop condition in a random read. This
directs the 24C08B/16B to transmit the next sequen-
tially addressed 8 bit word (Figure 7-3).
To provide sequential reads the 24C08B/16B contains
an internal address pointer which is incremented by
one at the completion of each operation. This address
pointer allows the entire memory contents to be serially
read during one operation.
7.4
Noise Protection
The 24C08B/16B employs a V
CC
threshold detector cir-
cuit which disables the internal erase/write logic if the
V
CC
is below 1.5 volts at nominal conditions.
The SCL and SDA inputs have Schmitt trigger and filter
circuits which suppress noise spikes to assure proper
device operation even on a noisy bus.
24C08B/16B
DS21081F-page 8
1999 Microchip Technology Inc.
FIGURE 7-1:
CURRENT ADDRESS READ
FIGURE 7-2:
RANDOM READ
FIGURE 7-3:
SEQUENTIAL READ
S
P
BUS ACTIVITY
MASTER
SDA LINE
BUS ACTIVITY
S
T
A
R
T
S
T
O
P
CONTROL
BYTE
DATA n
A
C
K
N
O
A
C
K
S
P
S
BUS ACTIVITY
MASTER
SDA LINE
BUS ACTIVITY
S
T
A
R
T
S
T
O
P
CONTROL
BYTE
A
C
K
WORD
ADDRESS (n)
CONTROL
BYTE
S
T
A
R
T
DATA (n)
A
C
K
A
C
K
N
O
A
C
K
P
BUS ACTIVITY
MASTER
SDA LINE
BUS ACTIVITY
S
T
O
P
CONTROL
BYTE
A
C
K
N
O
A
C
K
DATA n
DATA n + 1
DATA n + 2
DATA n + X
A
C
K
A
C
K
A
C
K
8.0
PIN DESCRIPTIONS
8.1
SDA Serial Address/Data Input/Output
This is a Bi-directional pin used to transfer addresses
and data into and data out of the device. It is an open
drain terminal, therefore the SDA bus requires a pull-up
resistor to V
CC
(typical 10 k
).
For normal data transfer SDA is allowed to change only
during SCL low. Changes during SCL high are
reserved for indicating the START and STOP condi-
tions.
8.2
SCL Serial Clock
This input is used to synchronize the data transfer from
and to the device.
8.3
WP
This pin must be connected to either V
SS
or V
CC
.
If tied to V
SS
, normal memory operation is enabled
(read/write the entire memory 000-7FF).
If tied to V
CC
, WRITE operations are inhibited. The
entire memory will be write-protected. Read opera-
tions are not affected.
This feature allows the user to use the 24C08B/16B as
a serial ROM when WP is enabled (tied to V
CC
).
8.4
A0, A1, A2
These pins are not used by the 24C08B/16B. They
may be left floating or tied to either V
SS
or V
CC
.
1999 Microchip Technology Inc.
DS21081F-page 9
24C08B/16B
NOTES:
24C08B/16B
DS21081F-page 10
1999 Microchip Technology Inc.
NOTES:
24C08B/16B
24C08B/16B Product Identification System
To order or to obtain information, e.g., on pricing or delivery, please use the listed part numbers, and refer to the factory or the listed
sales offices.
Sales and Support
Data Sheets
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:
1.
Your local Microchip sales office
2.
The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277
3.
The Microchip Worldwide Site (www.microchip.com)
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.
New Customer Notification System
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.
Package:
P = Plastic DIP (300 mil Body), 8-lead
SL = Plastic SOIC (150 mil Body), 14-lead
SN = Plastic SOIC (150 mil Body), 8-lead
Temperature
Blank = 0C to +70C
Range:
I
= -40C to +85C
E = -40
C to +125
C
Device:
24C08B
8K I
2
C Serial EEPROM
24C08BT
8K I
2
C Serial EEPROM (Tape and Reel)
24C16B
16K I
2
C Serial EEPROM
24C16BT
16K I
2
C Serial EEPROM (Tape and Reel)
24C08B/16B
E
/P
1999 Microchip Technology Inc.
DS21081F-page 11
2002 Microchip Technology Inc.
Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip's products as critical com-
ponents in life support systems is not authorized except with
express written approval by Microchip. No licenses are con-
veyed, implicitly or otherwise, under any intellectual property
rights.
Trademarks
The Microchip name and logo, the Microchip logo, FilterLab,
K
EE
L
OQ
, microID, MPLAB, PIC, PICmicro, PICMASTER,
PICSTART, PRO MATE, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip Tech-
nology Incorporated in the U.S.A. and other countries.
dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,
MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode
and Total Endurance are trademarks of Microchip Technology
Incorporated in the U.S.A.
Serialized Quick Turn Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.
All other trademarks mentioned herein are property of their
respective companies.
2002, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.
Printed on recycled paper.
Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999. The
Company's quality system processes and
procedures are QS-9000 compliant for its
PICmicro
8-bit MCUs, K
EE
L
OQ
code hopping
devices, Serial EEPROMs and microperipheral
products. In addition, Microchip's quality
system for the design and manufacture of
development systems is ISO 9001 certified.
Note the following details of the code protection feature on PICmicro
MCUs.
The PICmicro family meets the specifications contained in the Microchip Data Sheet.
Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,
when used in the intended manner and under normal conditions.
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-
edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.
The person doing so may be engaged in theft of intellectual property.
Microchip is willing to work with the customer who is concerned about the integrity of their code.
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as "unbreakable".
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of
our product.
If you have any further questions about this matter, please contact the local sales office nearest to you.
2002 Microchip Technology Inc.
M
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com
Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456
Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307
Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821
Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075
Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924
Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260
Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387
Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338
New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955
Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509
ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755
China - Beijing
Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104
China - Chengdu
Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-6766200 Fax: 86-28-6766599
China - Fuzhou
Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521
China - Shanghai
Microchip Technology Consulting (Shanghai)
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060
China - Shenzhen
Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1315, 13/F, Shenzhen Kerry Centre,
Renminnan Lu
Shenzhen 518001, China
Tel: 86-755-2350361 Fax: 86-755-2366086
Hong Kong
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431
India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O'Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062
Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-334-8870 Fax: 65-334-8850
Taiwan
Microchip Technology Taiwan
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139
EUROPE
Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
France
Microchip Technology SARL
Parc d'Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany
Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883
United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820
01/18/02
W
ORLDWIDE
S
ALES
AND
S
ERVICE