ChipFind - документация

Электронный компонент: MT9123

Скачать:  PDF   ZIP
8-45
Description
The MT9123 Voice Echo Canceller implements a
cost effective solution for telephony voice-band echo
cancellation conforming to ITU-T G.165
requirements. The MT9123 architecture contains two
echo cancellers which can be configured to provide
dual channel 64 millisecond echo cancellation or
single channel 128 millisecond echo cancellation.
The MT9123 operates in two major modes:
Controller or Controllerless. Controller mode allows
access to an array of features for customizing the
MT9123 operation. Controllerless mode is for
applications where default register settings are
sufficient.
Features
Dual channel 64ms or single channel 128ms
echo cancellation
Conforms to ITU-T G.165 requirements
Narrow-band signal detection
Programmable double-talk detection threshold
Non-linear processor with adaptive suppression
threshold and comfort noise insertion
Offset nulling of all PCM channels
Controllerless mode or Controller mode with
serial interface
ST-BUS or variable-rate SSI PCM interfaces
Selectable
/A-Law ITU-T G.711;
/A-Law Sign
Mag; linear 2's complement
Per channel selectable 12 dB attenuator
Transparent data transfer and mute option
19.2 MHz master clock operation
Applications
Wireless Telephony
Trunk echo cancellers
Figure 1 - Functional Block Diagram
Linear/
/A-Law
+
Non-Linear
Processor
Offset
Null
Linear/
/A-Law
Linear/
/A-Law
Microprocessor
Interface
Double-Talk
Detector
Adaptive
Filter
Control
Narrow-Band
Detector
Linear/
/A-Law
Offset
Null
12dB
Attenuator
Echo Canceller A
Echo Canceller B
VDD
VSS
PWRDN
IC1
F0od
F0i
BCLK/C4i
MCLK
Sout
Rin
ENA1
ENB1
CONFIG1
CONFIG2
S1/DATA1
S2/DATA2
S3/CS
S4/SCLK
Sin
Rout
ENA2
ENB2
NLP
LAW
FORMAT
IC3
IC4
-
Programmable
Bypass
IC2
ISSUE 1
October 1996
Ordering Information
MT9123AP
28 Pin PLCC
MT9123AE
28 Pin PDIP
-40
C to + 85
C
MT9123
Dual Voice Echo Canceller
Preliminary Information
CMOS
MT9123
Preliminary Information
8-46
Figure 2 - Pin Connections
Pin Description
Pin #
Name
Description
1
ENA1
SSI Enable Strobe / ST-BUS Mode for Rin/Sout (Input). This pin has dual functions
depending on whether SSI or ST-BUS is selected.
For SSI, this strobe must be present for frame synchronization. This is an active high channel
enable strobe, 8 or 16 data bits wide, enabling serial PCM data transfer for Echo Canceller A
on Rin/Sout pins. Strobe period is 125 microseconds.
For ST-BUS, this pin, in conjunction with the ENB1 pin, will select the proper ST-BUS mode for
Rin/Sout pins (see ST-BUS Operation description). The selected mode applies to both Echo
Canceller A and B.
2
ENB1
SSI Enable Strobe / ST-BUS Mode for Rin/Sout (Input). This pin has dual functions
depending on whether SSI or ST-BUS is selected.
For SSI, this is an active high channel enable strobe, 8 or 16 data bits wide, enabling serial
PCM data transfer for Echo Canceller B on Rin/Sout pins. Strobe period is 125 microseconds.
For ST-BUS, this pin, in conjunction with the ENA1 pin, will select the proper ST-BUS mode for
Rin/Sout pins (see ST-BUS Operation description). The selected mode applies to both Echo
Canceller A and B.
3
ENA2
SSI Enable Strobe / ST-BUS Mode for Sin/Rout (Input). This pin has dual functions
depending on whether SSI or ST-BUS is selected.
For SSI, this is an active high channel enable strobe, 8 or 16 data bits wide, enabling serial
PCM data transfer for Echo Canceller A on Sin/Rout pins. Strobe period is 125 microseconds.
For ST-BUS, this pin, in conjunction with the ENB2 pin, will select the proper ST-BUS mode for
Sin/Rout pins (see ST-BUS Operation description). The selected mode applies to both Echo
Canceller A and B.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
28
27
26
25
24
23
22
21
S2/DATA2
VDD
F0od
IC4
S1/DATA1
S4/SCLK
Sout
Rout
BCLK/C4i
CONFIG1
CONFIG2
Sin
Rin
NLP
VSS
ENB2
ENB1
F0i
FORMAT
IC2
LAW
ENA1
PWRDN
IC3
ENA2
MCLK
S3/CS
ENB2
ENB1
ENA1
ENA2
BCLK/
C4i
CONFIG1
CONFIG2
Sin
Rin
NLP
VSS
IC2
MCLK
FORMA
T
LA
W
PWRDN
IC3
IC4
S4/SCLK
S3/
CS
S2/DATA2
VDD
F0od
S1/DATA1
Sout
Rout
F0i
PLCC
4
5
6
7
8
9
10
11
25
24
23
22
21
20
19
3
2
1
28
27
26
12
13
14
15
16
17
18
PDIP
IC1
IC1
Preliminary Information
MT9123
8-47
4
ENB2
SSI Enable Strobe / ST-BUS Mode for Sin/Rout (Input). This pin has dual functions
depending on whether SSI or ST-BUS is selected.
For SSI, this is an active high channel enable strobe, 8 or 16 data bits wide, enabling serial
PCM data transfer for Echo Canceller B on Sin/Rout pins. Strobe period is 125 microseconds.
For ST-BUS, this pin, in conjunction with the ENA2 pin, will select the proper ST-BUS mode for
Sin/Rout pins (see ST-BUS Operation description). The selected mode applies to both Echo
Canceller A and B.
5
Rin
Receive PCM Signal Input (Input). 128 kbit/s to 4096 kbit/s serial PCM input stream. Data
may be in either companded or 2's complement linear format. Two PCM channels are time-
multiplexed on this pin. These are the Receive Input reference channels for Echo Cancellers
A and B. Data bits are clocked in following SSI or ST-BUS timing requirements.
6
Sin
Send PCM Signal Input (Input). 128 kbit/s to 4096 kbit/s serial PCM input stream. Data may
be in either companded or 2's complement linear format. Two PCM channels are time-
multiplexed on this pin. These are the Send Input channels (after echo path) for Echo
Cancellers A and B. Data bits are clocked in following SSI or ST-BUS timing requirements.
7
VSS
Digital Ground. Nominally 0 volts.
8
MCLK
Master Clock (Input). Nominal 20 MHz Master Clock input. May be connected to an
asynchronous (relative to frame signal) clock source.
9
IC1
Internal Connection 1 (Input). Must be tied to Vss.
10
NLP
Non-Linear Processor Control (Input).
Controllerless Mode: An active high enables the Non-Linear Processors in Echo Cancellers A
and B. Both NLP's are disabled when low. Intended for conformance testing to G.165 and it is
usually tied to Vdd for normal operation.
Controller Mode: This pin is ignored (tie to Vdd or Vss). The non-linear processor operation is
controlled by the NLPDis bit in Control Register 2. Refer to the Register Summary.
11
IC2
Internal Connection 2 (Input). Must be tied to Vss.
12
LAW
A/
Law Select (Input). An active low selects
-
Law companded PCM. When high, selects
A-Law companded PCM. This control is for both echo cancellers and is valid for both
controller and controllerless modes.
13
FORMAT ITU-T/Sign Mag (Input). An active low selects sign-magnitude PCM code. When high,
selects ITU-T (G.711) PCM code. This control is for both echo cancellers and is valid for both
controller and controllerless modes.
14
PWRDN
Power-down (Input). An active low resets the device and puts the MT9123 into a low-power
stand-by mode.
15
IC3
Internal Connection 3 (Output). Must be left unconnected.
16
IC4
Internal Connection 4 (Output). Must be left unconnected.
17/18
17
18
S4/S3
SCLK
CS
Selection of Echo Canceller B Functional States (Input).
Controllerless Mode: Selects Echo Canceller B functional states according to Table 2.
Controller Mode: S4 and S3 pins become SCLK and CS pins respectively.
Serial Port Synchronous Clock (Input). Data clock for the serial microport interface.
Chip Select (Input). Enables serial microport interface data transfers. Active low.
Pin Description (continued)
Pin #
Name
Description
MT9123
Preliminary Information
8-48
Notes:
1. All unused inputs should be connected to logic low or high unless otherwise stated. All outputs should be left open circuit when not used.
2. All inputs have TTL compatible logic levels except for MCLK, Sin and Rin pins which have CMOS compatible logic levels and PWRDN
pin which has Schmitt trigger compatible logic levels.
3. All outputs are CMOS pins with CMOS logic levels.
19/20
19
20
S2/S1
DATA2
DATA1
Selection of Echo Canceller A Functional States (Input).
Controllerless Mode: Selects Echo Canceller A functional states according to Table 2.
Controller Mode: S2 and S1 pins become DATA2 and DATA1 pins respectively.
Serial Data Receive (Input).
In Motorola/National serial microport operation, the DATA2 pin is used for receiving data. In
Intel serial microport operation, the DATA2 pin is not used and must be tied to Vss or Vdd.
Serial Data Port (Bidirectional).
In Motorola/National serial microport operation, the DATA1 pin is used for transmitting data. In
Intel serial microport operation, the DATA1 pin is used for transmitting and receiving data.
21
F0od
Delayed Frame Pulse Output (Output). In ST-BUS operation, this pin generates a delayed
frame pulse after the 4th channel time slot and is used for daisy-chaining multiple ST-BUS
devices. See Figures 5 to 8.
In SSI operation, this pin outputs logic low.
22
VDD
Positive Power Supply. Nominally 5 volts.
23
Sout
Send PCM Signal Output (Output). 128 kbit/s to 4096 kbit/s serial PCM output stream. Data
may be in either companded or 2's complement linear PCM format. Two PCM channels are
time-multiplexed on this pin. These are the Send Out signals after echo cancellation and Non-
linear processing. Data bits are clocked out following SSI or ST-BUS timing requirements.
24
Rout
Receive PCM Signal Output (Output). 128 kbit/s to 4096 kbit/s serial PCM output stream.
Data may be in either companded or 2's complement linear PCM format. Two PCM channels
are time-multiplexed on this pin. This output pin is provided for convenience in some
applications and may not always be required. Data bits are clocked out following SSI or ST-
BUS timing requirements.
25
F0i
Frame Pulse (input). In ST-BUS operation, this is a frame alignment low going pulse. SSI
operation is enabled by connecting this pin to Vss.
26
BCLK/C4i Bit Clock/ST-BUS Clock (Input). In SSI operation, BCLK pin is a 128 kHz to 4.096 MHz bit
clock. This clock must be synchronous with ENA1, ENA2, ENB1 and ENB2 enable strobes.
In ST-BUS operation, C4i pin must be connected to the 4.096MHz (C4) system clock.
27/28 CONFIG1/
CONFIG2
Device Configuration Pins (Inputs). When CONFIG1 and CONFIG2 pins are both logic 0,
the MT9123 serial microport is enabled. This configuration is defined as Controller Mode.
When CONFIG1 and CONFIG2 pins are in any other logic combination, the MT9123 is
configured in Controllerless Mode. See Table 3.
Pin Description (continued)
Pin #
Name
Description
Preliminary Information
MT9123
8-49
Functional Description
The MT9123 architecture contains two individually
controlled echo cancellers (Echo Canceller A and B).
They can be set in three distinct configurations:
Normal, Back-to-Back and Extended Delay (see
Figure 3). Under Normal configuration, the two echo
cancellers are positioned in parallel providing 64
millisecond echo cancellation in two channels
simultaneously. In Back-to-Back configuration, the
two echo cancellers are positioned to cancel echo
coming from both directions in a single channel. In
Extended-Delay configuration, the two echo
cancellers are internally cascaded into one 128
millisecond echo canceller.
Each echo canceller contains the following main
elements (see Figure 1).
Adaptive Filter for estimating the echo channel
Subtracter for cancelling the echo
Double-Talk detector for disabling the filter
adaptation during periods of double-talk
Non-Linear Processor for suppression of
residual echo
Narrow-Band Detector for preventing Adaptive
Filter divergence caused by narrow-band
signals
Offset Null filters for removing the DC
component in PCM channels
12dB attenuator for signal attenuation
Serial controller interface compatible with
Motorola, National and Intel microcontrollers
PCM encoder/decoder compatible with
/A-
Law ITU-T G.711,
/A-Law Sign-Mag or linear
2's complement coding
The MT9123 has two modes of operation:
Controllerless and Controller. Controllerless mode is
intended for applications where customization is not
required. Controller mode allows access to all
registers for customizing the MT9123 operation.
Refer to Table 7 for a complete list. Controller mode
is selected when CONFIG1 and CONFIG2 pins are
both connected to Vss.
Each echo canceller in the MT9123 has four
functional states:
Mute, Bypass, Disable Adaptation
and
Enable Adaptation. These are explained in the
section entitled Echo Canceller Functional States.
Figure 3 - Device Configuration
Rin
Rout
Sout
Sin
echo
path A
Optional -12dB pad
PORT 2
PORT 1
echo
path B
+
-
channel A
channel A
+
-
channel B
channel B
E.C.A
E.C.B
a) Normal Configuration (64ms)
+
-
channel A
channel A
E.C.A
Sin
Sout
Rout
Rin
b) Extended Delay Configuration (128ms)
PORT 2
PORT 1
+
E.C.A
Sin
Sout
Rout
Rin
c) Back-to-Back Configuration (64ms)
-
E.C.B
+
-
echo
echo
path
path
PORT 2
PORT 1
echo
path A
Adaptive
Filter (64ms)
Adaptive
Filter (64ms)
Optional -12dB pad
Adaptive
Filter (64ms)
Optional -12dB pad
Adaptive
Filter (64ms)
Optional -12dB pad
Adaptive Filter
(128 ms)
Optional -12dB pad
8-50
MT9123
Preliminary Information
Adaptive Filter
The adaptive filter is a 1024 tap FIR filter which is
divided into two sections. Each section contains 512
taps providing 64ms of echo estimation. In Normal
configuration, the first section is dedicated to
channel A and the second section to channel B. In
Extended Delay configuration, both sections are
cascaded to provide 128ms of echo estimation in
channel A.
Double-Talk Detector
Double-Talk is defined as those periods of time when
signal energy is present in both directions
simultaneously. When this happens, it is necessary
to disable the filter adaptation to prevent divergence
of the adaptive filter coefficients. Note that when
double-talk is detected, the adaptation process is
halted but the echo canceller continues to cancel
echo.
A double-talk condition exists whenever the Sin
signal level is greater than the expected return echo
level. The relative signal levels of Rin (Lrin) and Sin
(Lsin) are compared according to the following
expression to identify a double-talk condition:
Lsin > Lrin + 20log
10
(DTDT)
where DTDT is the Double-Talk Detection Threshold.
Lsin and Lrin are the relative signal levels expressed
in dBm0.
A different method is used when it is uncertain
whether Sin consists of a low level double-talk signal
or an echo return. During these periods, the
adaptation process is slowed down but it is not
halted.
Controllerless Mode
In G.165 standard, the echo return loss is expected
to be at least 6dB. This implies that the Double-Talk
Detector Threshold (DTDT) should be set to 0.5
(-6dB). However, in order to get additional
guardband, the DTDT is set internally to 0.5625
(-5dB). In controllerless mode, the Double-Talk
Detector is always active.
Controller Mode
In some applications the return loss can be higher or
lower than 6dB. The MT9123 allows the user to
change the detection threshold to suit each
application's need. This threshold can be set by
writing the desired threshold value into the DTDT
register.
The DTDT register is 16 bits wide. The register value
in hexadecimal can be calculated with the following
equation:
DTDT
(hex)
= hex(DTDT
(dec)
* 32768)
where 0 < DTDT
(dec)
< 1
Example:
For DTDT = 0.5625 (-5dB), the
hexadecimal value becomes
hex(
0.5625 * 32768
)
= 4800h
Non-Linear Processor (NLP)
After echo cancellation, there is always a small
amount of residual echo which may still be audible.
The MT9123 uses an NLP to remove residual echo
signals which have a level lower than the Adaptive
Suppression Threshold (TSUP in G.165). This
threshold depends upon the level of the Rin (Lrin)
reference signal as well as the programmed value of
the Non-Linear Processor Threshold register
(NLPTHR). TSUP can be calculated by the following
equation:
TSUP = Lrin + 20log
10
(NLPTHR)
where NLPTHR is the Non-Linear Processor
Threshold register value and Lrin is the relative
power level expressed in dBm0.
When the level of residual error signal falls below
TSUP, the NLP is activated further attenuating the
residual signal to less than -65dBm0. To prevent a
perceived decrease in background noise due to the
activation of the NLP, a spectrally-shaped comfort
noise, equivalent in power level to the background
noise, is injected. This keeps the perceived noise
level constant. Consequently, the user does not hear
the activation and de-activation of the NLP.
Controllerless Mode
The NLP processor can be disabled by connecting
the NLP pin to Vss.
Controller Mode
The NLP processor can be disabled by setting the
NLPDis bit to 1 in Control Register 2.
The NLPTHR register is 16 bits wide. The register
value in hexadecimal can be calculated with the
following equation:
Preliminary Information
MT9123
8-51
NLPTHR
(hex)
= hex(NLPTHR
(dec)
* 32768)
where 0 < NLPTHR
(dec)
< 1
The comfort noise injection can be disabled by
setting the INJDis bit to 1 in Control Register 1.
It should be noted that the NLPTHR is valid and the
comfort noise injection is active only when the NLP is
enabled.
Narrow Band Signal Detector (NBSD)
Single or dual frequency tones (e.g. DTMF tones)
present in the reference input (Rin) of the echo
canceller for a prolonged period of time may cause
the adaptive filter to diverge. The Narrow Band
Signal Detector (NBSD) is designed to prevent this
divergence by detecting single or dual tones of
arbitrary frequency, phase, and amplitude. When
narrow band signals are detected, the adaptation
process is halted but the echo canceller continues to
cancel echo.
Controllerless Mode
The NBSD is always active and automatically
disables the filter adaptation process when narrow
band signals are detected.
Controller Mode
The NBSD can be disabled by setting the NBDis bit
to 1 in Control Register 2.
Offset Null Filter
Adaptive filters in general do not operate properly
when a DC offset is present on either the reference
signal (Rin) or the echo composite signal (Sin). To
remove the DC component, the MT9123
incorporates Offset Null filters in both Rin and Sin
inputs.
Controllerless Mode
The Offset Null filters are always active.
Controller Mode
The offset null filters can be disabled by setting the
HPFDis bit to 1 in Control Register 2.
Echo Canceller Functional States
Each echo canceller has four functional states: Mute,
Bypass, Disable Adaptation and Enable Adaptation.
Mute:
The Mute state forces the echo canceller to
transmit quiet code and halts the filter adaptation
process.
In Normal configuration, the PCM output data on
Rout is replaced with the quiet code according to
the following table.
In Back-to-Back configuration, both echo cancellers
are combined to implement a full duplex echo
canceller. Therefore muting Echo Canceller A
causes quiet code to be transmitted on Rout, while
muting Echo Canceller B causes quiet code to be
transmitted on Sout.
In Extended Delay configuration, both echo
cancellers are cascaded to make one 128ms echo
canceller. In this configuration, muting Echo
Canceller A causes quiet code to be transmitted on
Rout.
Bypass:
The Bypass state directly transfers PCM codes from
Rin to Rout and from Sin to Sout. When Bypass state
is selected, the adaptive filter coefficients are reset
to zero.
Disable Adaptation:
When the Disable Adaptation state is selected, the
adaptive filter coefficients are frozen at their current
value. In this state, the adaptation process is halted
however the MT9123 continues to cancel echo.
Enable Adaptation:
In Enable Adaptation state, the adaptive filter
coefficients are continually updated. This allows
the echo canceller to model the echo return path
characteristics in order to cancel echo. This is the
normal operating state.
Controllerless Mode
The four functional states can be selected via S1,
S2, S3, and S4 pins as shown in the following table.
LINEAR
16 bits
2's
complement
SIGN/
MAGNITUDE
-Law
A-Law
CCITT (G.711)
-Law
A-Law
+Zero
(quiet code)
0000h
80h
FFh
D5h
Table 1 - Quiet PCM Code Assignment
8-52
MT9123
Preliminary Information
(1) Filter coefficients are frozen (adaptation disabled)
(2) The adaptive filter coefficients are reset to zero
(3) The MT9123 cancels echo
Table 2 - Functional States Control Pins
Controller Mode
The echo canceller functions are selected in Control
Register 1 and Control Register 2 through four
control bits: MuteS, MuteR, Bypass and AdaptDis.
See Register Summary for details.
MT9123 Throughput Delay
The throughput delay of the MT9123 varies
according to the data path and the device
configuration. For all device configurations, except
for Bypass state, Rin to Rout has a delay of two
frames and Sin to Sout has a delay of three frames.
In Bypass state, the Rin to Rout and Sin to Sout
paths have a delay of two frames. In ST-BUS
operation, the D and C channels have a delay of
one frame.
Power Down
Forcing the PWRDN pin to logic low, will put the
MT9123 into a power down state. In this state all
internal clocks are halted, the DATA1, Sout and Rout
pins are tristated and the F0od pin output high.
The device will automatically begin the execution of
its initialization routines when the PWRDN pin is
returned to logic high and a clock is applied to the
MCLK pin. The initialization routines execute for one
frame and will set the MT9123 to default register
values.
Device Configuration
The MT9123 architecture contains two individually
controlled echo cancellers (Echo Canceller A and B).
They can be set in three distinct configurations:
Normal, Back-to-Back, and Extended Delay. See
Figure 3.
Normal Configuration:
In this configuration, the two echo cancellers (Echo
Canceller A and B) are positioned in parallel, as
shown in Figure 3a, providing 64 milliseconds of
echo cancellation in two channels simultaneously.
In SSI operation, both channels are available in
different timeslots on the same TDM (Time Division
Multiplexing) bus. For Echo Canceller A, the ENA1
enable strobe pin defines the Rin/Sout (PORT1) time
slot while the ENA2 enable strobe pin defines the
Sin/Rout (PORT2) time slot. The ENB1 and ENB2
enable strobes perform the same function for Echo
Canceller B.
In ST-BUS operation, the ENA1, ENA2, ENB1 and
ENB2 pins are used to determine the PCM data
format and the channel locations. See Table 4.
Back-to-Back Configuration:
In this configuration, the two echo cancellers are
positioned to cancel echo coming from both
directions in a single channel providing full duplex 64
millisecond echo-cancellation. See Figure 3c. This
configuration uses only one timeslot on PORT1 and
PORT2, allowing a no-glue interface for applications
where bidirectional echo cancellation is required.
In SSI operation, ENA1 and ENA2 enable pins are
used to strobe data on Rin/Sout and Sin/Rout
respectively. In ST-BUS operation, ENA1, ENA2,
ENB1 and ENB2 inputs are used to select the ST-
BUS mode according to Table 4.
Examples of Back-to-Back configuration include
positioning the MT9123 between a codec and a
transmission device or between two codecs for echo
control on analog trunks.
Extended Delay configuration:
In this configuration, the two echo cancellers are
internally cascaded into one 128 millisecond echo
canceller. See Figure 3b. In SSI operation, ENA1
and ENA2 enable pins are used to strobe data on
Rin/Sout and Sin/Rout respectively. In ST-BUS
operation, ENA1, ENA2, ENB1 and ENB2 inputs are
used to select the ST-BUS mode according to Table
4.
Controllerless Mode
The three configurations can be selected through the
CONFIG1 and CONFIG2 pins as shown in the
following table.
Echo
Canceller A
S2/S1
Functional State
Echo
Canceller B
S4/S3
00
Mute
(1)
00
01
Bypass
(2)
01
10
Disable Adaptation
(1,3)
10
11
Enable Adaptation
(3)
11
Preliminary Information
MT9123
8-53
Table 3 - Configuration in Controllerless Mode
Controller Mode
In Control Register 1, the Normal configuration can
be programmed by setting both BBM and Extended-
Delay bits to 0. Back-to-Back configuration can be
programmed by setting the BBM bit to 1 and
Extended-Delay bit to 0. Extended-Delay
configuration can be programmed by setting the
Extended-Delay bit to 1 and BBM bit to 0. Both BBM
and Extended-Delay bits in Control Register 1 can
not be set to 1 at the same time.
PCM Data I/O
The PCM data transfer for the MT9123 is provided
through two PCM ports. PORT1 consists of Rin and
Sout pins while PORT2 consists of Sin and Rout Pins.
The Data is transferred through these ports
according to either ST-BUS or SSI conventions. The
device determines the mode of operation by
monitoring the signal applied to the F0i pin. When a
valid ST-BUS frame pulse is applied to the F0i pin,
the MT9123 will assume ST-BUS operation. If F0i is
tied continuously to Vss the MT9123 will assume SSI
operation.
ST-BUS Operation
The ST-BUS PCM interface conforms to Mitel's ST-
BUS standard and it is used to transport 8 bit
companded PCM data (using one timeslot) or 16 bit
2's complement linear PCM data (using two
timeslots). Pins ENA1 and ENB1 select timeslots on
PORT1 while pins ENA2 and ENB2 select timeslots
on PORT2. See Table 4 and Figures 5 to 8.
Table 4 - ST-BUS Mode Select
Note that if the device is in back-to-back or extended
delay configurations, the second timeslot in any ST-
BUS Mode contains undefined data. This means that
the following timeslots contain undefined data:
timeslot 1 in ST-BUS Mode 1; timeslot 3 in ST-BUS
Modes 2 & 3 and timeslots 2 and 3 in ST-BUS Mode
4.
SSI Operation
The SSI PCM interface consists of data input pins
(Rin, Sin), data output pins (Sout, Rout), a variable
rate bit clock (BCLK), and four enable pins
(ENA1,ENB1, ENA2 and ENB2) to provide strobes
for data transfers. The active high enable may be
either 8 or 16 BCLK cycles in duration. Automatic
detection of the data type (8 bit companded or 16 bit
2's complement linear) is accomplished internally.
The data type cannot change dynamically from one
frame to the next.
In SSI operation, the frame boundary is determined
by the rising edge of the ENA1 enable strobe (see
Figure 9). The other enable strobes (ENB1, ENA2
and ENB2) are used for parsing input/output data
and they must pulse within 125 microseconds of the
rising edge of ENA1. If they are unused, they must
be tied to Vss.
In SSI operation, the enable strobes may be a mixed
combination of 8 or 16 BCLK cycles allowing the
flexibility to mix 2's complement linear data on one
port (e.g., Rin/Sout) with companded data on the
other port (e.g., Sin/Rout).
CONFIG1
CONFIG2
CONFIGURATION
0
0
(selects Controller Mode)
0
1
Extended Delay Mode
1
0
Back-to-Back Mode
1
1
Normal Mode
PORT1
Rin/Sout
ST-BUS Mode
Selection
PORT2
Sin/Rout
Enable Pins
Enable Pins
ENB1
ENA1
ENB2
ENA2
0
0
Mode 1. 8 bit companded PCM I/O on
timeslots 0 & 1.
0
0
0
1
Mode 2. 8 bit companded PCM I/O on
timeslots 2 & 3.
0
1
1
0
Mode 3. 8 bit companded PCM I/O on
timeslots 2 & 3. Includes D & C chan-
nel bypass in timeslots 0 & 1.
1
0
1
1
Mode 4. 16 bit 2's complement linear
PCM I/O on timeslots 0 - 3.
1
1
8-54
MT9123
Preliminary Information
Table 5 - SSI Enable Strobe Pins
PCM Law and Format Control (LAW, FORMAT)
The PCM companding/coding law used by the
MT9123 is controlled through the LAW and FORMAT
pins. ITU-T G.711 companding curves for
-Law and
A-Law are selected by the LAW pin. PCM coding
ITU-T G.711 and Sign-Magnitude are selected by the
FORMAT pin. See Table 6.
Linear PCM
The 16-bit 2's complement PCM linear coding
permits a dynamic range beyond that which is
specified in ITU-T G.711 for companded PCM. The
echo-cancellation algorithm will accept 16 bits 2's
complement linear code which gives a dynamic
range of +15dBm0.
Linear PCM data must be formatted as 14-bit, 2's
complement data with three bits of sign extension in
the most significant positions (i.e.: S,S,S,12,11,
...1,0) for a total of 16 bits where "S" is the extended
sign bit. When A-Law is converted to 2's complement
linear format, it must be scaled up by 6dB (i.e. left
shifted one bit) with a zero inserted into the least
significant bit position. See Figure 8.
Enable Strobe Pin
Echo Canceller
Port
ENA1
A
1
ENB1
B
1
ENA2
A
2
ENB2
B
2
PCM Code
Sign-Magnitude
FORMAT=0
ITU-T (G.711)
FORMAT=1
/A-LAW
LAW = 0 or 1
-LAW
LAW = 0
A-LAW
LAW =1
+ Full Scale
1111 1111
1000 0000
1010 1010
+ Zero
1000 0000
1111 1111
1101 0101
- Zero
0000 0000
0111 1111
0101 0101
- Full Scale
0111 1111
0000 0000
0010 1010
Table 6 - Companded PCM
Bit Clock (BCLK/C4i)
The BCLK/C4i pin is used to clock the PCM data in
both SSI (BCLK) and ST-BUS (C4i) operations.
In SSI operation, the bit rate is determined by the
BCLK frequency. This input must contain either eight
or sixteen clock cycles within the valid enable strobe
window. BCLK may be any rate between 128 KHz to
4.096 MHz and can be discontinuous outside of the
enable strobe windows defined by ENA1, ENB1,
ENA2 and ENB2 pins. Incoming PCM data (Rin, Sin)
are sampled on the falling edge of BCLK while
outgoing PCM data (Sout, Rout) are clocked out on
the rising edge of BCLK. See Figure 17.
In ST-BUS operation, connect the system C4
(4.096MHz) clock to the C4i pin.
Master Clock (MCLK)
A nominal 20MHz master clock (MCLK) is required
for execution of the MT9123 algorithms. The MCLK
input may be asynchronous with the 8KHz frame. If
only one channel operation is required, (Echo
Canceller A only) the MCLK can be as low as
9.6MHz.
Microport
The serial microport provides access to all MT9123
internal read and write registers and it is enabled
when CONFIG1 and CONFIG2 pins are both set to
logic 0. This microport is compatible with Intel MCS-
51 (mode 0), Motorola SPI (CPOL=0, CPHA=0), and
National Semiconductor Microwire specifications.
The microport consists of a transmit/receive data pin
(DATA1), a receive data pin (DATA2), a chip select
pin (CS) and a synchronous data clock pin (SCLK).
The MT9123 automatically adjusts its internal timing
and pin configuration to conform to Intel or Motorola/
National requirements. The microport dynamically
senses the state of the SCLK pin each time CS pin
becomes active (i.e. high to low transition). If SCLK
pin is high during CS activation, then Intel mode 0
timing is assumed. In this case DATA1 pin is defined
as a bi-directional (transmit/receive) serial port and
DATA2 is internally disconnected. If SCLK is low
during CS activation, then Motorola/National timing
is assumed and DATA1 is defined as the data
transmit pin while DATA2 becomes the data receive
pin. The MT9123 supports Motorola half-duplex
processor mode (CPOL=0 and CPHA=0). This
means that during a write to the MT9123, by the
Motorola processor, output data from the DATA1 pin
Preliminary Information
MT9123
8-55
must be ignored. This also means that input data on
the DATA2 pin is ignored by the MT9123 during a
valid read by the Motorola processor.
All data transfers through the microport are two bytes
long. This requires the transmission of a Command/
Address byte followed by the data byte to be written
or read from the addressed register. CS must remain
low for the duration of this two-byte transfer. As
shown in Figures 10 and 11, the falling edge of CS
indicates to the MT9123 that a microport transfer is
about to begin. The first 8 clock cycles of SCLK after
the falling edge of CS are always used to receive the
Command/Address byte from the microcontroller.
The Command/Address byte contains information
detailing whether the second byte transfer will be a
read or a write operation and at what address. The
next 8 clock cycles are used to transfer the data byte
between the MT9123 and the microcontroller. At the
end of the two-byte transfer, CS is brought high again
to terminate the session. The rising edge of CS will
tri-state the DATA1 pin. The DATA1 pin will remain tri-
stated as long as CS is high.
Intel processors utilize Least Significant Bit (LSB)
first transmission while Motorola/National processors
use Most Significant Bit (MSB) first transmission.
The MT9123 microport automatically accommodates
these two schemes for normal data bytes. However,
to ensure timely decoding of the R/W and address
information, the Command/Address byte is defined
differently for Intel and Motorola/National operations.
Refer to the relative timing diagrams of Figures 10
and 11.
Receive data is sampled on the rising edge of SCLK
while transmit data is clocked out on the falling edge
of SCLK. Detailed microport timing is shown in
Figure 19 and Figure 20.
MT9123
Preliminary Information
8-56
Function
Controllerless
selected when pins CONFIG1 & 2
00
Controller
selected when pins CONFIG1 & 2 = 00
Normal Configuration Set pins CONFIG1 to 1 and CONFIG2 1 to select this
configuration.
Set bits Extended-Delay to 0 and BBM to 0 in Control Reg-
ister 1 to select.
Back-to-Back
Configuration
Set pins CONFIG1 to 1 and CONFIG2 to 0 to select
this configuration.
Set bit BBM to 1 in Control Register 1 to select.
Extended Delay
Configuration
Set pins CONFIG1 to 0 and CONFIG2 to 1 to select
this configuration.
Set bit Extended-Delay to 1 in Control Register 1 to select.
Mute
Set pins S2/S1 to 00 and S4/S3 to 00 to select for Echo
Canceller A and Echo Canceller B respectively.
Set bit MuteR to 1 or MuteS to 1 in Control Register 2 to
select.
Bypass
Set pins S2/S1 to 01 and S4/S3 to 01 to select for Echo
Canceller A and Echo Canceller B, respectively.
Set bit Bypass to 1 in Control Register 1 to select.
Disable Adaptation
Set pins S2/S1 to 10 and S4/S3 to 10 to select for Echo
Canceller A and Echo Canceller B, respectively.
Set bit AdaptDis to 1 in Control Register 1 to select.
Enable Adaptation
Set pins S2/S1 to 11 and S4/S3 to 11 to select for Echo
Canceller A and Echo Canceller B, respectively.
Set bits AdaptDis to 0 and Bypass to 0 in Control Register
1 to select.
SSI
Tie pin F0i to VSS to select.
Tie pin F0i to VSS to select.
ST-BUS
Apply a valid ST-BUS frame pulse to F0i pin to select.
Apply a valid ST-BUS frame pulse to F0i pin to select.
12dB Attenuator
Always disabled.
Set bit PAD to 1 in Control Register 1 to enable.
Double-Talk
Detector
Continuously enabled which disables filter adaptation
when double-talk is detected.
The detection threshold can be controlled via Double-Talk
Detection Threshold Register 1 and 2.
Non-Linear
Processor
Set pin NLP to 1 to enable.
Set bit NLPDis to 1 to disable.
PCM Law
Set pin LAW to 1 or 0 to select A-Law or
-Law
respectively.
Set pin LAW to 1or 0 to select A-Law or
-Law
respectively.
PCM Format
Set pin FORMAT to 0 or 1 to select Sign-Magnitude or
ITU-T format respectively.
Set pin FORMAT to 0 or 1 to select Sign-Magnitude or
ITU-T format respectively.
Narrow-Band Signal
Detector
Continuously enabled which disables the filter adapta-
tion when narrow band signal is detected.
Set bit NBDis to 1 in Control Register 2 to disable.
Offset Null Filter
Continuously enabled which removes the DC compo-
nent in the PCM input.
Set bit HPFDis to 1 in Control Register 2 to disable.
Table 7 - MT9123 Function Control Summary
Preliminary Information
MT9123
8-57
Figure 5 - ST-BUS 8 Bit Companded PCM I/O on Timeslots 0 & 1 (Mode 1)
Figure 6 - ST-BUS 8 Bit Companded PCM I/O on Timeslots 2 & 3 (Mode 2)
C4i
F0i
Sin
Rout
Rin
Sout
F0od
7 6 5 4
7 6 5 4 3 2 1 0
3 2 1 0
7 6 5 4
7 6 5 4 3 2 1 0
3 2 1 0
7 6 5 4
7 6 5 4 3 2 1 0
3 2 1 0
7 6 5 4
7 6 5 4 3 2 1 0
3 2 1 0
outputs=High impedance
inputs = don't care
ECA
ECB
In ST-BUS Mode 1, both echo canceller I/O channels are assigned to ST-BUS timeslots 0 and 1. Note that the user
could configure PORT1 and PORT2 into different ST-BUS modes. The pin F0od is always delayed 4 time slots to permit
a more flexible interleave of ST-BUS modes.
PORT1
PORT2
0
1
2
3
4
ECA
ECB
C4i
F0i
Sin
Rout
Rin
Sout
F0od
7 6 5 4
7 6 5 4 3 2 1 0
3 2 1 0
7 6 5 4
7 6 5 4 3 2 1 0
3 2 1 0
7 6 5 4
7 6 5 4 3 2 1 0
3 2 1 0
7 6 5 4
7 6 5 4 3 2 1 0
3 2 1 0
ECA
ECB
In ST-BUS Mode 2, both echo canceller I/O channels are assigned to ST-BUS timeslots 2 and 3. Note that the user
could configure PORT1 and PORT2 into different ST-BUS modes. The pin F0od is always delayed 4 time slots to permit
a more flexible interleave of ST-BUS modes.
ECA
ECB
PORT1
PORT2
0
1
2
3
4
outputs=High impedance
inputs = don't care
MT9123
Preliminary Information
8-58
Figure 7 - ST-BUS 8 Bit Companded PCM I/O with D and C channels (Mode 3)
Figure 8 - ST-BUS 16 Bit 2's complement linear PCM I/O (Mode 4)
C4i
F0i
Rin
Sout
ECA
ECB
F0od
Sin
Rout
ECA
ECB
PORT1
PORT2
indicates that an input channel is bypassed to an output channel
ST-BUS Mode 3 supports connection to 2B+D devices where timeslots 0 and 1 transport D and C channels and both
echo canceller I/O channels are assigned to ST-BUS timeslots 2 and 3. Both PORT1 and PORT2 must be configured in
ST-BUS Mode 3.
0
1
2
3
4
outputs=High impedance
inputs = don't care
7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
C4i
F0i
Rin
Sout
ECA
ECB
F0od
7 6 5 4 3 2 1 0
Sin
Rout
PORT1
PORT2
S S S 12 11 10 9 8
7 6 5 4 3 2 1 0
S S S 12 11 10 9 8
7 6 5 4 3 2 1 0
S S S 12 11 10 9 8
7 6 5 4 3 2 1 0
S S S 12 11 10 9 8
ECA
ECB
7 6 5 4 3 2 1 0
S S S 12 11 10 9 8
7 6 5 4 3 2 1 0
S S S 12 11 10 9 8
7 6 5 4 3 2 1 0
S S S 12 11 10 9 8
7 6 5 4 3 2 1 0
S S S 12 11 10 9 8
ST-BUS Mode 4 allows 16 bits 2's complement linear data to be transferred using ST-BUS I/O timing. Note that PORT1
and PORT2 need not necessarily both be in mode 4.
outputs=High impedance
inputs = don't care
Preliminary Information
MT9123
8-59
Figure 9 - SSI Operation
Figure 10 - Serial Microport Timing for Intel Mode 0
BCLK
ENA1
ENB1
Rin
Sout
ECA
ECB
8 or 16 bits
8 or 16 bits
8 or 16 bits
8 or 16 bits
PORT1
PORT2
ECA
ECB
8 or 16 bits
8 or 16 bits
8 or 16 bits
8 or 16 bits
ENA2
ENB2
Sin
Rout
Note that the two ports are independent so that, for example, PORT1 can operate with 8 bit enable strobes and PORT2
can operate with 16 bit enable strobes.
outputs=High impedance
inputs = don't care
R/W
A
0
A
1
A
2
A
3
A
4
A
5
X
COMMAND/ADDRESS
DATA INPUT/OUTPUT
DATA 1
SCLK
CS

Delays due to internal processor timing which are transparent to the MT9123.
The MT9123:
outputs transmit data on the falling edge of SCLK
The falling edge of CS indicates that a COMMAND/ADDRESS byte will be transmitted from the microprocessor. The subsequent
byte is always data followed by CS returning high.
A new COMMAND/ADDRESS byte may be loaded only by CS cycling high then low again.
The COMMAND/ADDRESS byte contains:
1 bit - Read/Write
6 bits - Addressing Data
1 bit - Unused
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
latches receive data on the rising edge of SCLK
MT9123
Preliminary Information
8-60
Figure 11 - Serial Microport Timing for Motorola Mode 00 or National Microwire
X
A
0
A
1
A
2
A
3
A
4
A
5
R/W
COMMAND/ADDRESS
DATA INPUT
DATA 2
Receive
DATA 1
Transmit
SCLK
CS
Delays due to internal processor timing which are transparent to the MT9123.
The falling edge of CS indicates that a COMMAND/ADDRESS byte will be transmitted from the microprocessor. The subsequent
byte is always data followed by CS returning high.
A new COMMAND/ADDRESS byte may be loaded only by CS cycling high then low again.
The COMMAND/ADDRESS byte contains: 1 bit - Read/Write
6 bits - Addressing Data
1 bit - Unused
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
High Impedance
DATA OUTPUT
The MT9123:
outputs transmit data on the falling edge of SCLK
latches receive data on the rising edge of SCLK
Preliminary Information
MT9123
8-61
Register Summary
Extended-
When high, Echo Cancellers A and B are internally cascaded into one 128ms echo canceller.
When low, Echo Cancellers A and B operate independently.
Do not enable both Extended-Delay and BBM configurations at the same time.
AdaptDis
When high, echo canceller adaptation is disabled.
When low, the echo canceller dynamically adapts to the echo path characteristics.
Bypass
When high, Sin data is by-passed to Sout and Rin data is by-passed to Rout.
When low, output data on both Sout and Rout is a function of the echo canceller algorithm.
PAD
When high, 12dB of attenuation is inserted into the Rin to Rout path.
When low the Rin to Rout path gain is 0dB.
BBM
When high the Back to Back configuration is enabled.
When low the Normal configuration is enabled. Do not enable Extended-Delay and BBM configurations at the same time.
Always set both BBM bits of the two echo cancellers to the same logic value to avoid conflict.
INJDis
When high, the noise injection process is disabled. When low noise injection is enabled.
Reset
When high, the power-up initialization is executed presetting all register bits including this bit.
Note: Bits marked as "1" or "0" are reserved bits and should be written as indicated.
Echo Canceller A, Control Register 1
ADDRESS = 00h WRITE/READ VERIFY
Power Reset Value
0000 0000
7
6
5
4
3
2
1
0
INJDis
BBM
PAD
AdaptDis
0
Extended
Bypass
Reset
Power Reset Value
0000 0010
7
6
5
4
3
2
1
0
INJDis
BBM
PAD
AdaptDis
1
0
Bypass
Reset
Echo Canceller B, Control Register 1
ADDRESS = 20h WRITE/READ VERIFY
Delay
Delay
CRA1
CRB1
MuteR
When high, data on Rout is muted to quiet code. When low, Rout carries active code.
MuteS
When high, data on Sout is muted to quiet code. When low, Sout carries active code.
HPFDis
When high, the offset nulling high pass filters are bypassed in the Rin and Sin paths.
When low, the offset nulling filters are active and will remove DC offsets on PCM input signals.
NBDis
When high, the narrow-band detector is disabled. When low, the narrow-band detector is enabled.
NLPDis
When high, the non-linear processor is disabled.
When low, the non-linear processors function normally. Useful for G.165 conformance testing.
Note: Bits marked as "0" are reserved bits and should be written as indicated.
Echo Canceller A, Control Register 2
ADDRESS = 01h WRITE/READ VERIFY
Power Reset Value
0000 0000
7
6
5
4
3
2
1
0
0
NLPDis
0
HPFDis
MuteS
MuteR
Echo Canceller B, Control Register 2
ADDRESS = 21h WRITE/READ VERIFY
NBDis
0
CR2
NB
Logic high indicates the presence of a narrow-band signal on Rin.
Active
Logic high indicates that the power level on Rin is above the threshold level (i.e., low power condition).
Down
Decision indicator for the non-linear processor gain adjustment.
Conv
Decision indicator for rapid adaptation convergence. Logic high indicates a rapid convergence state.
DTDet
Logic high indicates the presence of a double-talk condition.
Power Reset Value
0000 0000
7
6
5
4
3
2
1
0
DTDet
Conv
Active
NB
Echo Canceller A, Status Register
ADDRESS = 02h READ
Echo Canceller B, Status Register
ADDRESS = 22h READ
Down
SR
MT9123
Preliminary Information
8-62
Power Reset Value
00h
7
6
5
4
3
2
1
0
FD
7
FD
6
FD
5
FD
4
FD
2
FD
1
FD
0
FD
3
Echo Canceller A, Flat Delay Register
ADDRESS = 04h WRITE/READ VERIFY
Echo Canceller B, Flat Delay Register
ADDRESS = 24h WRITE/READ VERIFY
Power Reset Value
00h
7
6
5
4
3
2
1
0
NS
7
NS
6
NS
5
NS
4
NS
2
NS
1
NS
0
NS
3
Echo Canceller A, Decay Step Number Register
ADDRESS = 07h WRITE/READ VERIFY
Echo Canceller B, Decay Step Number Register
ADDRESS = 27h WRITE/READ VERIFY
Power Reset Value
04h
7
6
5
4
3
2
1
0
0
0
0
0
SSC
2
SSC
1
SSC
0
0
Echo Canceller A, Decay Step Size Control Register
ADDRESS = 06h WRITE/READ VERIFY
Echo Canceller B, Decay Step Size Control Register
ADDRESS = 26h WRITE/READ VERIFY
Note: Bits marked with "0" are reserved bits and should be written "0".
SSC
NS
Amplitude of MU
Time
Flat Delay (FD
7-0
)
Step Size (SS)
1.0
2
-16
FIR Filter Length (512 or 1024 taps)
Number of Steps (NS
7-0
)
The Exponential Decay registers (Decay Step Number and Decay Step Size) and Flat Delay register allow the LMS adaptation
step-size (MU) to be programmed over the length of the FIR filter. A programmable MU profile allows the performance of the echo
canceller to be optimized for specific applications. For example, if the characteristic of the echo response is known to have a flat
delay of several milliseconds and a roughly exponential decay of the echo impulse response, then the MU profile can be
programmed to approximate this expected impulse response thereby improving the convergence characteristics of the adaptive
filter. Note that in the following register descriptions, one tap is equivalent to 125
s (64ms/512 taps).
FD
7-0
Flat Delay: This register defines the flat delay of the MU profile, (i.e., where the MU value is 2
-16
). The delay is defined
as FD
7-0
x 8 taps. For example; if FD
7-0
= 5, then MU=2
-16
for the first 40 taps of the echo canceller FIR filter. The valid
range of FD
7-0
is: 0 <= FD
7-0
<= 64 in normal mode and 0 <= FD
7-0
<= 128 in extended-delay mode. The default value of
FD
7-0
is zero.
SSC
2-0
Decay Step Size Control: This register controls the step size (SS) to be used during the exponential decay of MU. The
decay rate is defined as a decrease of MU by a factor of 2 every SS taps of the FIR filter, where SS = 4 x2
SSC
2-0
. For
example; If SSC
2-0
= 4, then MU is reduced by a factor of 2 every 64 taps of the FIR filter. The default value of SSC
2-0
is 04h.
NS
7-0
Decay Step Number: This register defines the number of steps to be used for the decay of MU where each step has a
period of SS taps (see SSC
2-0
). The start of the exponential decay is defined as:
Filter Length (512 or 1024) - [ Decay Step Number (NS
7-0
) x Step Size (SS) ] where SS = 4 x2
SSC
2-0
.
For example, if NS
7-0
=4 and SSC
2-0
=4, then the exponential decay start value is 512 - [NS
7-0
x SS] = 512 - [4 x (4x2
4
)] =
256 taps for a filter length of 512 taps.
FD
Preliminary Information
MT9123
8-63
Power Reset Value
N/A
7
6
5
4
3
2
1
0
RP
15
RP
14
RP
13
RP
12
RP
10
RP
9
RP
8
RP
11
Echo Canceller A, Rin Peak Detect Register 2
ADDRESS = 0Dh READ
Echo Canceller B, Rin Peak Detect Register 2
ADDRESS = 2Dh READ
Power Reset Value
N/A
7
6
5
4
3
2
1
0
RP
7
RP
6
RP
5
RP
4
RP
2
RP
1
RP
0
RP
3
Echo Canceller A, Rin Peak Detect Register 1
ADDRESS = 0Ch READ
Echo Canceller B, Rin Peak Detect Register 1
ADDRESS = 2Ch READ
These peak detector registers allow the user to monitor the receive in signal (Rin) peak signal level. The information is in 16-bit 2's
complement linear coded format presented in two 8 bit registers for each echo canceller. The high byte is in Register 2 and the low
byte is in Register 1.
RP
RP
Power Reset Value
N/A
7
6
5
4
3
2
1
0
SP
15
SP
14
SP
13
SP
12
SP
10
SP
9
SP
8
SP
11
Echo Canceller A, Sin Peak Detect Register 2
ADDRESS = 0Fh READ
Echo Canceller B, Sin Peak Detect Register 2
ADDRESS = 2Fh READ
Power Reset Value
N/A
7
6
5
4
3
2
1
0
SP
7
SP
6
SP
5
SP
4
SP
2
SP
1
SP
0
SP
3
Echo Canceller A, Sin Peak Detect Register 1
ADDRESS = 0Eh READ
Echo Canceller B, Sin Peak Detect Register 1
ADDRESS = 2Eh READ
These peak detector registers allow the user to monitor the send in signal (Sin) peak signal level. The information is in 16-bit 2's
complement linear coded format presented in two 8 bit registers for each echo canceller. The high byte is in Register 2 and the low
byte is in Register 1.
SP
SP
Power Reset Value
N/A
7
6
5
4
3
2
1
0
EP
15
EP
14
EP
13
EP
12
EP
10
EP
9
EP
8
EP
11
Echo Canceller A, Error Peak Detect Register 2
ADDRESS = 11h READ
Echo Canceller B, Error Peak Detect Register 2
ADDRESS = 31h READ
Power Reset Value
N/A
7
6
5
4
3
2
1
0
EP
7
EP
6
EP
5
EP
4
EP
2
EP
1
EP
0
EP
3
Echo Canceller A, Error Peak Detect Register 1
ADDRESS = 10h READ
Echo Canceller B, Error Peak Detect Register 1
ADDRESS = 30h READ
These peak detector registers allow the user to monitor the error signal peak level. The information is in 16-bit 2's complement
linear coded format presented in two 8 bit registers for each echo canceller. The high byte is in Register 2 and the low byte is in
Register 1.
EP
EP
MT9123
Preliminary Information
8-64
Power Reset Value
48h
7
6
5
4
3
2
1
0
DTDT
15
DTDT
14
DTDT
13
DTDT
12
DTDT
10
DTDT
9
DTDT
8
DTDT
11
Echo Canceller A, Double-Talk Detection Threshold Register 2
ADDRESS = 15h WRITE/READ VERIFY
Echo Canceller B, Double-Talk Detection Threshold Register 2
ADDRESS = 35h WRITE/READ VERIFY
Power Reset Value
00h
7
6
5
4
3
2
1
0
DTDT
7
DTDT
6
DTDT
5
DTDT
4
DTDT
2
DTDT
1
DTDT
0
DTDT
3
Echo Canceller A, Double-Talk Detection Threshold Register 1
ADDRESS = 14h WRITE/READ VERIFY
Echo Canceller B, Double-Talk Detection Threshold Register 1
ADDRESS = 34h WRITE/READ VERIFY
This register allows the user to program the level of Double-Talk Detection Threshold (DTDT). The 16 bit 2's complement linear
value defaults to 4800h= 0.5625 or -5dB. The maximum value is 7FFFh = 0.9999 or 0 dB. The high byte is in Register 2 and
the low byte is in Register 1.
DTDT
DTDT
Power Reset Value
08h
7
6
5
4
3
2
1
0
NLP
15
NLP
14
NLP
13
NLP
12
NLP
10
NLP
9
NLP
8
NLP
11
Echo Canceller A, Non-Linear Processor Threshold Register 2
ADDRESS = 19h WRITE/READ VERIFY
Echo Canceller B, Non-Linear Processor Threshold Register 2
ADDRESS = 39h WRITE/READ VERIFY
Power Reset Value
00h
7
6
5
4
3
2
1
0
NLP
7
NLP
6
NLP
5
NLP
4
NLP
2
NLP
1
NLP
0
NLP
3
Echo Canceller A, Non-Linear Processor Threshold Register 1
ADDRESS = 18h WRITE/READ VERIFY
Echo Canceller B, Non-Linear Processor Threshold Register 1
ADDRESS = 38h WRITE/READ VERIFY
This register allows the user to program the level of the Non-Linear Processor Threshold (NLPTHR). The 16 bit 2's complement
linear value defaults to 0800h = 0.0625 or -24.1dB. The maximum value is 7FFFh = 0.9999 or 0 dB. The high byte is in
Register 2 and the low byte is in Register 1.
NLPTHR
NLPTHR
Power Reset Value
40h
7
6
5
4
3
2
1
0
MU
15
MU
14
MU
13
MU
12
MU
10
MU
9
MU
8
MU
11
Echo Canceller A, Adaptation Step Size (MU) Register 2
ADDRESS = 1Bh WRITE/READ VERIFY
Echo Canceller B, Adaptation Step Size (MU) Register 2
ADDRESS = 3Bh WRITE/READ VERIFY
Power Reset Value
00h
7
6
5
4
3
2
1
0
MU
7
MU
6
MU
5
MU
4
MU
2
MU
1
MU
0
MU
3
Echo Canceller A, Adaptation Step Size (MU) Register 1
ADDRESS = 1Ah WRITE/READ VERIFY
Echo Canceller B, Adaptation Step Size (MU) Register 1
ADDRESS = 3Ah WRITE/READ VERIFY
This register allows the user to program the level of MU. MU is a 16 bit 2's complement value which defaults to 4000h = 1.0
The high byte is in Register 2 and the low byte is in Register 1.
MU
MU
Preliminary Information
MT9123
8-65
Applications
Figure 12 - (Basic Rate ISDN) Wireless Application Diagram
Figure 13 - (Analog Trunk) Wireless Application Diagram
F0b
DSTo
DSTi
T
R
C4o
F0i
MCLK
EN1
EN2
ADPCMo
ADPCMi
Din
Dout
STB1
Sin
Rout
BCLK
C20
BCLK
Sout
Rin
DSTi
DSTo
ENA
ENB
MT9123
MT9125 ADPCM
Dual RF Section
MT8910 2B1Q
MT8972 Bi-Phase
MT8931 S-INT
echo
paths
MT9123 is in SSI mode
F0i
Din
Dout
Clockin
T
R
MT8941 PLL
F0
T
R
MT9160 5V CODEC
F0i
MCLK
EN1
EN2
ADPCMo
ADPCMi
Din
Dout
STB1
C20
BCLK
DSTi
DSTo
MT9125 ADPCM
Dual RF Section
C4
F0i
Din
Dout
Clockin
MT9160 5V CODEC
MT9123 is in SSI mode
Sin
Rout
BCLK
Sout
Rin
ENA
ENB
MT9123
echo
path
echo
path
MT9123
Preliminary Information
8-66
Figure 14 - (Analog Trunk) Wireless Application Diagram
Figure 15 - (Basic Rate ISDN) Wired Telephone Application Diagram
F0i
Din
Dout
Clockin
T
R
F0
T
R
MT9160 5V CODEC
F0i
MCLK
EN1
ADPCMo
ADPCMi
Din
Dout
STB1
C20
BCLK
DSTi
DSTo
MT9125 ADPCM
Dual RF Section
echo
path
echo
path
C4
F0i
Din
Dout
Clockin
MT9160 5V CODEC
MT9123 connected in ST-BUS mode 1
Sin
Rout
Sout
Rin
MT9123
MT8941 PLL
F0i
C4i
F0b
DSTo
DSTi
T
R
C4o
F0i
MCLK
Sin
Sout
Rout
Rin
DSTi
DSTo
MT9123
MT909x Digital Phone
MT8910 2B1Q
MT8972 Bi-phase
MT8931 S-INT
echo
path
F0i
C4i
MT9123 in ST-BUS mode 1
using D&C channel bypass
Back-To-Back Configuration
Handset
Preliminary Information
MT9123
8-67
* Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.
Typical figures are at 25
C and are for design aid only: not guaranteed and not subject to production testing.
Typical figures are at 25
C and are for design aid only: not guaranteed and not subject to production testing.
* DC Electrical Characteristics are over recommended temperature and supply voltage.
Absolute Maximum Ratings*
Parameter
Symbol
Min
Max
Units
1
Supply Voltage
V
DD
-V
SS
-0.3
7.0
V
2
Voltage on any digital pin
V
i/o
V
SS
-0.3
V
DD
+ 0.3
V
3
Continuous Current on any digital pin
I
i/o
20
mA
4
Storage Temperature
T
ST
-65
150
C
5
Package Power Dissipation
P
D
500
mW
Recommended Operating Conditions
- Voltages are with respect to ground (V
SS
) unless otherwise stated.
Characteristics
Sym
Min
Typ
Max
Units
Test Conditions
1
Supply Voltage
V
DD
4.5
5.0
5.5
V
2
TTL Input High Voltage
2.4
V
DD
V
400mV noise margin
3
TTL Input Low Voltage
V
SS
0.4
V
400mV noise margin
4
CMOS Input High Voltage
4.5
V
DD
V
5
CMOS Input Low Voltage
V
SS
0.5
V
6
Operating Temperature
T
A
-40
+85
C
DC Electrical Characteristics*
- Voltages are with respect to ground (V
SS
) unless otherwise stated.
Characteristics
Sym
Min
Typ
Max
Units
Conditions/Notes
1
Supply Current
I
CC
I
DD
50
100
A
mA
PWRDN = 0
PWRDN = 1, clocks active
2
Input HIGH voltage (TTL)
V
IH
2.0
V
All except MCLK,Sin,Rin
3
Input LOW voltage (TTL)
V
IL
0.8
V
All except MCLK,Sin,Rin
4
Input HIGH voltage (CMOS)
V
IHC
3.5
V
MCLK,Sin,Rin
5
Input LOW voltage (CMOS)
V
ILC
1.5
V
MCLK,Sin,Rin
6
Input leakage current
I
IH
/I
IL
0.1
10
A
V
IN
=V
SS
to V
DD
7
High level output voltage
V
OH
0.9
V
DD
V
I
OH
=2.5mA
8
Low level output voltage
V
OL
0.1V
DD
V
I
OL
=5.0mA
9
High impedance leakage
I
OZ
1
10
A
V
IN
=V
SS
to V
DD
10
Output capacitance
C
o
10
pF
11
Input capacitance
C
i
8
pF
12
PWRDN
Positive Threshold Voltage
Hysteresis
Negative Threshold Voltage
V+
V
H
V-
3.75
1.0
1.25
V
V
V
MT9123
Preliminary Information
8-68
Timing is over recommended temperature and power supply voltages.
AC Electrical Characteristics
- Serial Data Interfaces (see Figures 17 and 18)
Voltages are with respect to ground (V
SS
) unless otherwise stated.
Characteristics
Sym
Min
Max
Units
Test Notes
1
MCLK Clock High
t
MCH
20
ns
2
MCLK Clock Low
t
MCL
20
ns
3
MCLK Frequency
Dual Channel
Single Channel
f
DCLK
f
SCLK
19.15
9.58
20.5
MHz
MHz
4
BCLK/C4i Clock High
t
BCH,
t
C4H
90
ns
5
BCLK/C4i Clock Low
t
BLL,
t
C4L
90
ns
6
BCLK/C4i Period
t
BCP
240
7900
ns
7
SSI Enable Strobe to Data Delay (first
bit)
t
SD
80
ns
C
L
=150pF
8
SSI Data Output Delay (excluding first
bit)
t
DD
80
ns
C
L
=150pF
9
SSI Output Active to High Impedance
t
AHZ
80
ns
C
L
=150pF
10
SSI Enable Strobe Signal Setup
t
SSS
10
t
BCP
-15
ns
11
SSI Enable Strobe Signal Hold
t
SSH
15
t
BCP
-10
ns
12
SSI Data Input Setup
t
DIS
10
ns
13
SSI Data Input Hold
t
DIH
15
ns
14
F0i Setup
t
F0iS
20
150
ns
15
F0i Hold
t
F0iH
20
150
ns
16
ST-BUS Data Output delay
t
DSD
80
ns
C
L
=150pF
17
ST-BUS Output Active to High
Impedance
t
ASHZ
80
ns
C
L
=150pF
18
ST-BUS Data Input Hold time
t
DSH
20
ns
19
ST-BUS Data Input Setup time
t
DSS
20
ns
20
F0od Delay
t
DFD
80
ns
C
L
=150pF
21
F0od Pulse Width Low
t
DFW
200
ns
C
L
=150pF
Preliminary Information
MT9123
8-69
Timing is over recommended temperature range and recommended power supply voltages.
Table 8 - Reference Level Definition for Timing Measurements
Figure 16 Master Clock - MCLK
Notes: 1. CMOS output
2. TTL input compatible
3. CMOS input
(see Table 8 for symbol definitions)
AC Electrical Characteristics
- Microport Timing (see Figure 17)
Characteristics
Sym
Min
Max
Units
Test Notes
1
Input Data Setup
t
IDS
100
ns
2
Input Data Hold
t
IDH
30
ns
3
Output Data Delay
t
ODD
100
ns
C
L
=150pF
4
Serial Clock Period
t
SCP
500
ns
5
SCLK Pulse Width High
t
SCH
250
ns
6
SCLK Pulse Width Low
t
SCL
250
ns
7
CS Setup-Intel
t
CSSI
200
ns
8
CS Setup-Motorola
t
CSSM
100
ns
9
CS Hold
t
CSH
100
ns
10
CS to Output High Impedance
t
OHZ
100
ns
C
L
=150pF
Characteristic
Symbol
TTL Pin
CMOS Pin
Units
TTL reference level
V
TT
1.5
-
V
CMOS reference level
V
CT
-
0.5*V
DD
V
Input HIGH level
V
H
2.4
0.9*V
DD
V
Input LOW level
V
L
0.4
0.1*V
DD
V
Rise/Fall HIGH measurement point
V
HM
2.0
0.7*V
DD
V
Rise/Fall LOW measurement point
V
HL
0.8
0.3*V
DD
V
MCLK
(3)
V
H
V
L
V
CT
t
MCH
t
MCL
MT9123
Preliminary Information
8-70
Figure 17 - SSI Data Port Timing
Notes: 1. CMOS output
2. TTL input compatible
3. CMOS input
(see Table 8 for symbol definitions)
Figure 18 - ST-BUS Data Port Timing
Notes: 1. CMOS output
2. TTL input compatible
3. CMOS input
(see Table 8 for symbol definitions)
Sout/Rout
(1)
V
CT
BCLK
(2)
V
H
V
L
V
TT
ENA1/ENA2
(2)
V
H
V
L
V
TT
Rin/Sin
(3)
V
H
V
L
V
CT
t
SD
t
SSS
t
DD
t
AHZ
t
SSH
t
DIS
t
DIH
t
BCP
t
BCH
t
BCL
Bit 0
Bit 1
Bit 0
Bit 1
or
ENB1/ENB2
(2)
Sout/Rout
(1)
V
CT
C4i
(2)
V
H
V
L
V
TT
F0i
(2)
V
H
V
L
V
TT
Rin/Sin
(3)
V
H
V
L
V
CT
F0od
(1)
V
CT
t
F0iS
t
F0iH
t
DSS
t
DSH
t
DSD
t
ASHZ
t
DFD
t
DFW
t
C4H
t
C4L
Bit 0
Bit 1
Bit 0
Bit 1
Preliminary Information
MT9123
8-71
Figure 19 - INTEL Serial Microport Timing
Notes: 1. CMOS output
2. TTL input compatible
3. CMOS input
(see Table 8 for symbol definitions)
Figure 20 - MOTOROLA Serial Microport Timing
Notes: 1. CMOS output
2. TTL input compatible
3. CMOS input
(see Table 8 for symbol definitions)
DATA1
(1, 2)
V
TT
,V
CT
SCLK
(2)
V
H
V
L
V
TT
CS
(
2)
V
H
V
L
V
TT
t
IDS
t
IDH
t
ODD
t
OHZ
t
CSSI
t
CSH
t
SCL
t
SCH
t
SCP
DATA INPUT
DATA OUTPUT
DATA2
(2)
V
H
V
L
V
TT
SCLK
(2)
V
H
V
L
V
TT
CS
(2)
V
H
V
L
V
TT
DATA1
(1)
V
CT
t
IDS
t
IDH
t
ODD
t
CSSM
t
CSH
t
OHZ
t
SCH
t
SCL
t
SCP
(Input)
(Output)
MT9123
Preliminary Information
8-72
Notes:
Package Outlines
Plastic Dual-In-Line Packages (PDIP) - E Suffix
NOTE: Controlling dimensions in parenthesis ( ) are in millimeters.
DIM
8-Pin
16-Pin
18-Pin
20-Pin
Plastic
Plastic
Plastic
Plastic
Min
Max
Min
Max
Min
Max
Min
Max
A
0.210 (5.33)
0.210 (5.33)
0.210 (5.33)
0.210 (5.33)
A
2
0.115 (2.92)
0.195 (4.95)
0.115 (2.92)
0.195 (4.95)
0.115 (2.92)
0.195 (4.95)
0.115 (2.92)
0.195 (4.95)
b
0.014 (0.356)
0.022 (0.558)
0.014 (0.356)
0.022 (0.558)
0.014 (0.356)
0.022 (0.558)
0.014 (0.356)
0.022 (0.558)
b
2
0.045 (1.14)
0.070 (1.77)
0.045 (1.14)
0.070 (1.77)
0.045 (1.14)
0.070 (1.77)
0.045 (1.14)
0.070 (1.77)
C
0.008
(0.203)
0.014 (0.356)
0.008 (0.203)
0.014(0.356)
0.008 (0.203)
0.014 (0.356)
0.008 (0.203)
0.014 (0.356)
D
0.355 (9.02)
0.400 (10.16)
0.780 (19.81)
0.800 (20.32)
0.880 (22.35)
0.920 (23.37)
0.980 (24.89)
1.060 (26.9)
D
1
0.005 (0.13)
0.005 (0.13)
0.005 (0.13)
0.005 (0.13)
E
0.300 (7.62)
0.325 (8.26)
0.300 (7.62)
0.325 (8.26)
0.300 (7.62)
0.325 (8.26)
0.300 (7.62)
0.325 (8.26)
E
1
0.240 (6.10)
0.280 (7.11)
0.240 (6.10)
0.280 (7.11)
0.240 (6.10)
0.280 (7.11)
0.240 (6.10)
0.280 (7.11)
e
0.100 BSC (2.54)
0.100 BSC (2.54)
0.100 BSC (2.54)
0.100 BSC (2.54)
e
A
0.300 BSC (7.62)
0.300 BSC (7.62)
0.300 BSC (7.62)
0.300 BSC (7.62)
L
0.115 (2.92)
0.150 (3.81)
0.115 (2.92)
0.150 (3.81)
0.115 (2.92)
0.150 (3.81)
0.115 (2.92)
0.150 (3.81)
e
B
0.430 (10.92)
0.430 (10.92)
0.430 (10.92)
0.430 (10.92)
e
C
0
0.060 (1.52)
0
0.060 (1.52)
0
0.060 (1.52)
0
0.060 (1.52)
E
1
3
2
1
E
n-2 n-1 n
L
D
D
1
b
2
A
2
e
b
C
e
A
Notes:
1) Not to scale
2) Dimensions in inches
3) (Dimensions in millimeters)
A
e
B
e
C
General-8
Package Outlines
Plastic Dual-In-Line Packages (PDIP) - E Suffix
DIM
22-Pin
24-Pin
28-Pin
40-Pin
Plastic
Plastic
Plastic
Plastic
Min
Max
Min
Max
Min
Max
Min
Max
A
0.210 (5.33)
0.250 (6.35)
0.250 (6.35)
0.250 (6.35)
A
2
0.125 (3.18)
0.195 (4.95)
0.125 (3.18)
0.195 (4.95)
0.125 (3.18)
0.195 (4.95)
0.125 (3.18)
0.195 (4.95)
b
0.014 (0.356)
0.022 (0.558)
0.014 (0.356)
0.022 (0.558)
0.014 (0.356)
0.022 (0.558)
0.014 (0.356)
0.022 (0.558)
b
2
0.045 (1.15)
0.070 (1.77)
0.030 (0.77)
0.070 (1.77)
0.030 (0.77)
0.070 (1.77)
0.030 (0.77)
0.070 (1.77)
C
0.008 (0.204)
0.015 (0.381)
0.008 (0.204)
0.015 (0.381)
0.008 (0.204)
0.015 (0.381)
0.008 (0.204)
0.015 (0.381)
D
1.050 (26.67)
1.120 (28.44)
1.150 (29.3)
1.290 (32.7)
1.380 (35.1)
1.565 (39.7)
1.980 (50.3)
2.095 (53.2)
D
1
0.005 (0.13)
0.005 (0.13)
0.005 (0.13)
0.005 (0.13)
E
0.390 (9.91)
0.430 (10.92)
0.600 (15.24)
0.670 (17.02)
0.600 (15.24)
0.670 (17.02)
0.600 (15.24)
0.670 (17.02)
E
0.290 (7.37)
.330 (8.38)
E
1
0.330 (8.39)
0.380 (9.65)
0.485 (12.32)
0.580 (14.73)
0.485 (12.32)
0.580 (14.73)
0.485 (12.32)
0.580 (14.73)
E
1
0.246 (6.25)
0.254 (6.45)
e
0.100 BSC (2.54)
0.100 BSC (2.54)
0.100 BSC (2.54)
0.100 BSC (2.54)
e
A
0.400 BSC (10.16)
0.600 BSC (15.24)
0.600 BSC (15.24)
0.600 BSC (15.24)
e
A
0.300 BSC (7.62)
e
B
0.430 (10.92)
L
0.115 (2.93)
0.160 (4.06)
0.115 (2.93)
0.200 (5.08)
0.115 (2.93)
0.200 (5.08)
0.115 (2.93)
0.200 (5.08)
15
15
15
15
E
1
3
2
1
E
n-2 n-1 n
L
D
D
1
b
2
A
2
e
b
C
e
A
Notes:
1) Not to scale
2) Dimensions in inches
3) (Dimensions in millimeters)
A
e
B
Shaded areas for 300 Mil Body Width 24 PDIP only
Package Outlines
Plastic J-Lead Chip Carrier - P-Suffix
F
D
1
D
H
E
1
I
A
1
A
G
D
2
E
E
2
Dim
20-Pin
28-Pin
44-Pin
68-Pin
84-Pin
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
A
0.165
(4.20)
0.180
(4.57)
0.165
(4.20)
0.180
(4.57)
0.165
(4.20)
0.180
(4.57)
0.165
(4.20)
0.200
(5.08)
0.165
(4.20)
0.200
(5.08)
A
1
0.090
(2.29)
0.120
(3.04)
0.090
(2.29)
0.120
(3.04)
0.090
(2.29)
0.120
(3.04)
0.090
(2.29)
0.130
(3.30)
0.090
(2.29)
0.130
(3.30)
D/E
0.385
(9.78)
0.395
(10.03)
0.485
(12.32)
0.495
(12.57)
0.685
(17.40)
0.695
(17.65)
0.985
(25.02)
0.995
(25.27)
1.185
(30.10)
1.195
(30.35)
D
1
/E
1
0.350
(8.890)
0.356
(9.042)
0.450
(11.430)
0.456
(11.582)
0.650
(16.510)
0.656
(16.662)
0.950
(24.130)
0.958
(24.333)
1.150
(29.210)
1.158
(29.413)
D
2
/E
2
0.290
(7.37)
0.330
(8.38)
0.390
(9.91)
0.430
(10.92)
0.590
(14.99)
0.630
(16.00)
0.890
(22.61)
0.930
(23.62)
1.090
(27.69)
1.130
(28.70)
e
0
0.004
0
0.004
0
0.004
0
0.004
0
0.004
F
0.026
(0.661)
0.032
(0.812)
0.026
(0.661)
0.032
(0.812)
0.026
(0.661)
0.032
(0.812)
0.026
(0.661)
0.032
(0.812)
0.026
(0.661)
0.032
(0.812)
G
0.013
(0.331)
0.021
(0.533)
0.013
(0.331)
0.021
(0.533)
0.013
(0.331)
0.021
(0.533)
0.013
(0.331)
0.021
(0.533)
0.013
(0.331)
0.021
(0.533)
H
0.050 BSC
(1.27 BSC)
0.050 BSC
(1.27 BSC)
0.050 BSC
(1.27 BSC)
0.050 BSC
(1.27 BSC)
0.050 BSC
(1.27 BSC)
I
0.020
(0.51)
0.020
(0.51)
0.020
(0.51)
0.020
(0.51)
0.020
(0.51)
Notes:
1) Not to scale
2) Dimensions in inches
3) (Dimensions in millimeters)
4) For D & E add for allowable Mold Protrusion 0.010"
e: (lead coplanarity)
General-10
M Mitel (design) and ST-BUS are registered trademarks of MITEL Corporation
Mitel Semiconductor is an ISO 9001 Registered Company
Copyright 1999 MITEL Corporation
All Rights Reserved
Printed in CANADA
TECHNICAL DOCUMENTATION - NOT FOR RESALE
World Headquarters - Canada
Tel: +1 (613) 592 2122
Fax: +1 (613) 592 6909
North America
Asia/Pacific
Europe, Middle East,
Tel: +1 (770) 486 0194
Tel: +65 333 6193
and Africa (EMEA)
Fax: +1 (770) 631 8213
Fax: +65 333 6192
Tel: +44 (0) 1793 518528
Fax: +44 (0) 1793 518581
http://www.mitelsemi.com
Information relating to products and services furnished herein by Mitel Corporation or its subsidiaries (collectively "Mitel") is believed to be reliable. However, Mitel assumes no
liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of
patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or
service conveys any license, either express or implied, under patents or other intellectual property rights owned by Mitel or licensed from third parties by Mitel, whatsoever.
Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Mitel, or non-Mitel furnished goods or services may infringe patents or
other intellectual property rights owned by Mitel.
This publication is issued to provide information only and (unless agreed by Mitel in writing) may not be used, applied or reproduced for any purpose nor form part of any order or
contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this
publication are subject to change by Mitel without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or
service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific
piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or
data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in
any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Mitel's
conditions of sale which are available on request.