ChipFind - документация

Электронный компонент: 2SK2368

Скачать:  PDF   ZIP

Document Outline

MOS FIELD EFFECT TRANSISTORS
DESCRIPTION
The 2SK2367/2SK2368 is N-Channel MOS Field Effect Transistor
designed for high voltage switching applications.
FEATURES
Low On-Resistance
2SK2367: R
DS (on)
= 0.5
(V
GS
= 10 V, I
D
= 8.0 A)
2SK2368: R
DS (on)
= 0.6
(V
GS
= 10 V, I
D
= 8.0 A)
Low C
iss
C
iss
= 1 600 pF TYP.
High Avalanche Capability Ratings
ABSOLUTE MAXIMUM RATINGS (T
A
= 25 C)
Drain to Source Voltage (2SK2367/2SK2368)
V
DSS
450/500
V
Gate to Source Voltage
V
GSS
30
V
Drain Current (DC)
I
D (DC)
15
A
Drain Current (pulse)*
I
D (pulse)
60
A
Total Power Dissipation (T
c
= 25 C)
P
T1
120
W
Total Power Dissipation (T
A
= 25 C)
P
T2
3.0
W
Channel Temperature
T
ch
150
C
Storage Temperature
T
stg
55 to +150 C
Single Avalanche Current**
I
AS
15
A
Single Avalanche Energy**
E
AS
161
mJ
*
PW
10
s, Duty Cycle
1 %
** Starting T
ch
= 25 C, R
G
= 25
, V
GS
= 20 V
0
2SK2367/2SK2368
SWITCHING
N-CHANNEL POWER MOS FET
INDUSTRIAL USE
Document No. TC-2506
(O. D. No. TC-8065)
Date Published December 1994 P
Printed in Japan
PACKAGE DIMENSIONS
(in millimeter)
1.00.2
1
2
3
1. Gate
2. Drain
3. Source
4. Fin (Drain)
MP-88
4
15.7 MAX.
3.20.2
2.80.1
0.60.1
2.20.2
5.45
5.45
4.7 MAX.
1.5
1.0
6.0
7.0
19 MIN.
20.00.2
3.00.2
4.50.2
Body
Diode
Source
Drain
Gate
1995
DATA SHEET
1994
2SK2367/2SK2368
2
ELECTRICAL CHARACTERISTICS (T
A
= 25 C)
CHARACTERISTIC
SYMBOL
MIN.
TYP.
MAX.
TEST CONDITIONS
Drain to Source On-Resistance
R
DS (on)
0.4
0.5
V
GS
= 10 V
2SK2367
0.5
0.6
I
D
= 8.0 A
2SK2368
Gate to Source Cutoff Voltage
V
GS (off)
2.5
3.5
V
DS
= 10 V, I
D
= 1 mA
Forward Transfer Admittance
| y
fs
|
5.0
V
DS
= 10 V, I
D
= 8.0 A
Drain Leakage Current
I
DSS
100
V
DS
= V
DSS
, V
GS
= 0
Gate to Source Leakage Current
I
GSS
100
V
GS
=
30 V, V
DS
= 0
Input Capacitance
C
iss
1 600
V
DS
= 10 V
Output Capacitance
C
oss
300
V
GS
= 0
Reverse Transfer Capacitance
C
rss
30
f = 1 MHz
Turn-On Delay Time
t
d (on)
30
I
D
= 8.0 A
Rise Time
t
r
40
V
GS
= 10 V
Turn-Off Delay Time
t
d (off)
70
V
DD
= 150 V
Fall Time
t
f
25
R
G
= 10
R
L
= 18.8
Total Gate Charge
Q
G
43
I
D
= 15 A
Gate to Source Charge
Q
GS
10
V
DD
= 400 V
Gate to Drain Charge
Q
GD
20
V
GS
= 10 V
Body Diode Forward Voltage
V
F (S-D)
1.0
I
F
= 15 A, V
GS
= 0
Reverse Recovery Time
t
rr
400
I
F
= 15 A, V
GS
= 0
Reverse Recovery Charge
Q
rr
1.8
di/dt = 50 A/
s
UNIT
V
S
A
nA
pF
pF
pF
ns
ns
ns
ns
nC
nC
nC
V
ns
C
The application circuits and their parameters are for references only and are not intended for use in actual design-in's.
Test Circuit 3 Gate Charge
V
GS
= 20 - 0 V
PG.
R
G
= 25
50
D.U.T.
L
V
DD
Test Circuit 1 Avalanche Capability
PG.
R
G
= 10
D.U.T.
R
L
V
DD
Test Circuit 2 Switching Time
R
G
PG.
I
G
= 2 mA
50
D.U.T.
R
L
V
DD
I
D
V
DD
I
AS
V
DS
BV
DSS
Starting T
ch
V
GS
0
t = 1 us
Duty Cycle
1 %
V
GS
Wave Form
I
D
Wave Form
V
GS
I
D
10 %
10 %
0
0
90 %
90 %
90 %
10 %
V
GS (on)
I
D
t
on
t
off
t
d (on)
t
r
t
d (off)
t
f
t
2SK2367/2SK2368
3
TYPICAL CHARACTERISTICS (T
A
= 25 C)
DERATING FACTOR OF FORWARD BIAS
SAFE OPERATING AREA
20
140
160
100
T
C
- Case Temperature - C
dT - Percentage of Rated Power - %
FORWARD BIAS SAFE OPERATING AREA
10
100
1 000
100
V
DS
- Drain to Source Voltage - V
I
D
- Drain Current - A
80
0
40
1.0
10
0.1
60
20
60
40
80
100
120
TOTAL POWER DISSIPATION vs.
CASE TEMPERATURE
20
140
160
100
T
C
- Case Temperature - C
P
T
- Total Power Dissipation - W
80
0
40
60
20
60
40
80
100
120
120
DRAIN CURRENT vs.
GATE TO SOURCE VOLTAGE
5
10
15
100
V
GS
- Gate to Source Voltage - V
I
D
- Drain Current - A
1
10
0.1
1
T
C
= 25 C
Single Pulse
100 s
1 ms
10 ms
Power Dissipation Limited
R
DS (on)
Limited
(at V
GS
= 10 V)
0
Pulsed
T
A
= 25 C
25 C
75 C
125 C
I
D (pulse)
PW = 10 s
I
D (DC)
DRAIN CURRENT vs.
DRAIN TO SOURCE VOLTAGE
V
DS
- Drain to Source Voltage - V
I
D
- Drain Current - A
4
16
8
12
24
16
12
8
4
0
Pulsed
V
GS
= 20 V
10 V
8 V
6 V
20
2SK2368
2SK2367
2SK2367/2SK2368
4
DRAIN TO SOURCE ON-STATE RESISTANCE vs.
GATE TO SOURCE VOLTAGE
TRANSIENT THERMAL RESISTANCE vs. PULSE WIDTH
PW - Pulse Width - s
r
th (ch-c) (t)
- Transient Thermal Resistance - C/W
1 000
100
10
1
0.1
0.01
0.001
10 u
100 u
1 m
10 m
100 m
1
10
100
1 000
T
C
= 25 C
Single Pulse
R
th (ch-a)
= 41.7 C/W
R
th (ch-c)
= 1.04 C/W
V
DS
= 10 V
Pulsed
FORWARD TRANSFER ADMITTANCE vs.
DRAIN CURRENT
1.0
10
100
100
I
D
- Drain Current - A
| yfs | - Forward Transfer Admittance - S
10
20
30
1.5
V
GS
- Gate to Source Voltage - V
R
DS (on)
- Drain to Source On-State Resistance -
GATE TO SOURCE CUTOFF VOLTAGE
vs. CHANNEL TEMPERATURE
T
ch
- Channel Temperature - C
V
GS (off)
- Gate to Source Cutoff Voltage - V
DRAIN TO SOURCE ON-STATE
RESISTANCE vs. DRAIN CURRENT
1.0
10
100
I
D
- Drain Current - A
R
DS (on)
- Drain to Source On-State Resistance -
Pulsed
50
0
50
100
150
4.0
3.0
2.0
1.0
0
10
0.1
1.0
1.0
0.5
0
1.0
2.0
0
Pulsed
T
A
= 25 C
25 C
75 C
125 C
I
D
= 10 A
5 A
2.5 A
2SK2367/2SK2368
5
DRAIN TO SOURCE ON-STATE RESISTANCE vs.
CHANNEL TEMPERATURE
Q
g
- Gate Charge - nC
V
DS
- Drain to Source Voltage - V
0
10
20
30
40
400
300
200
100
T
ch
- Channel Temperature - C
R
DS (on)
- Drain to Source On-State Resistance
-
50
0
50
100
150
1.5
1.0
0.5
0
I
D
= 10 A
5 A
REVERSE RECOVERY TIME vs.
DRAIN CURRENT
1.0
10
100
I
D
- Drain Current - A
t
rr
- Reverse Recovery Time - ns
1 000
0.1
100
DYNAMIC INPUT/OUTPUT CHARACTERISTICS
V
GS
- Gate to Source Voltage - V
16
14
12
10
8
6
4
2
I
D
= 10 A
V
DD
= 400 V
250 V
125 V
V
GS
V
DS
di/dt = 50 A/ s
V
GS
= 0
SOURCE TO DRAIN DIODE
FORWARD VOLTAGE
V
SD
- Source to Drain Voltage - V
I
SD
- Diode Forward Current - A
1.5
100
10
1.0
0.1
1.0
0.5
0
Pulsed
V
GS
= 10 V
V
GS
= 0
CAPACITANCE vs. DRAIN TO
SOURCE VOLTAGE
10
100
1 000
10 000
V
DS
- Drain to Source Voltage - V
C
iss
, C
oss
, C
rss
- Capacitance - pF
1 000
100
10
1
V
GS
= 0
f = 1 MHz
C
iss
C
oss
C
rss
1.0
10
100
1 000
I
D
- Drain Current - A
t
d (on)
, t
r
, t
d (off)
, t
f
- Switching Time - ns
100
0.1
10
1.0
V
DS
= 150 V
V
GS
= 10 V
R
G
= 10
SWITCHING CHARACTERISTICS
t
r
t
f
t
d(on)
t
d(off)
V
GS
= 10 V