ChipFind - документация

Электронный компонент: 2SK3112

Скачать:  PDF   ZIP

Document Outline

1998,2001
MOS FIELD EFFECT TRANSISTOR
2SK3112
SWITCHING
N-CHANNEL POWER MOS FET
INDUSTRIAL USE
Document No. D13335EJ1V0DS00 (1st edition)
Date Published May 2001 NS CP (K)
Printed in Japan
DATA SHEET
DESCRIPTION
The 2SK3112 is N-channel MOS FET device that features a
low on-state resistance and excellent switching characteristics,
and designed for high voltage applications such as DC/DC
converter, actuator driver.
FEATURES
Gate voltage rating 30 V
Low on-state resistance
R
DS(on)
= 110 m
MAX. (V
GS
= 10 V, I
D
= 13 A)
Low input capacitance
C
iss
= 1600 pF TYP. (V
DS
= 10 V, V
GS
= 0 V)
Avalanche capability rated
Built-in gate protection diode
Surface mount device available
ABSOLUTE MAXIMUM RATINGS (T
A
= 25C)
Drain to Source Voltage (V
GS
= 0 V)
V
DSS
200
V
Gate to Source Voltage (V
DS
= 0 V)
V
GSS
30
V
Drain Current (DC) (T
C
= 25C)
I
D(DC)
25
A
Drain Current (pulse)
Note1
I
D(pulse)
75
A
Total Power Dissipation (T
C
= 25C)
P
T1
100
W
Total Power Dissipation (T
A
= 25C)
P
T2
1.5
W
Channel Temperature
T
ch
150
C
Storage Temperature
T
stg
-
55 to +150
C
Single Avalanche Current
Note2
I
AS
25
A
Single Avalanche Energy
Note2
E
AS
250
mJ
Notes 1. PW
10
s, Duty Cycle
1%
2. Starting T
ch
= 25C, V
DD
= 100 V, R
G
= 25
, V
GS
= 20 V
0 V
ORDERING INFORMATION
PART NUMBER
PACKAGE
2SK3112
TO-220AB
2SK3112-S
TO-262
2SK3112-ZJ
TO-263(MP-25ZJ)
(TO-220AB)
(TO-262)
(TO-263)
The information in this document is subject to change without notice. Before using this document, please
confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for
availability and additional information.
Data Sheet D13335EJ1V0DS
2
2SK3112
ELECTRICAL CHARACTERISTICS (T
A
= 25C)
Characteristics
Symbol
Test Conditions
MIN.
TYP.
MAX.
Unit
Zero Gate Voltage Drain Current
I
DSS
V
DS
= 200 V, V
GS
= 0 V
100
A
Gate Leakage Current
I
GSS
V
GS
=
30 V, V
DS
= 0 V
10
A
Gate Cut-off Voltage
V
GS(off)
V
DS
= 10 V, I
D
= 1 mA
2.5
4.5
V
Forward Transfer Admittance
| y
fs
|
V
DS
= 10 V, I
D
= 13 A
6.0
S
Drain to Source On-state Resistance
R
DS(on)
V
GS
= 10 V, I
D
= 13 A
76
110
m
Input Capacitance
C
iss
V
DS
= 10 V
1600
pF
Output Capacitance
C
oss
V
GS
= 0 V
430
pF
Reverse Transfer Capacitance
C
rss
f = 1 MHz
280
pF
Turn-on Delay Time
t
d(on)
V
DD
= 100 V , I
D
= 13 A
35
ns
Rise Time
t
r
V
GS
= 10 V
140
ns
Turn-off Delay Time
t
d(off)
R
G
= 10
110
ns
Fall Time
t
f
70
ns
Total Gate Charge
Q
G
V
DD
= 160 V
60
nC
Gate to Source Charge
Q
GS
V
GS
= 10 V
11
nC
Gate to Drain Charge
Q
GD
I
D
= 25 A
40
nC
Body Diode Forward Voltage
V
F(S-D)
I
F
= 25 A, V
GS
= 0 V
1.0
V
Reverse Recovery Time
t
rr
I
F
= 25 A, V
GS
= 0 V
300
ns
Reverse Recovery Charge
Q
rr
di/dt = 50 A/
s
1.8
C
TEST CIRCUIT 1 AVALANCHE CAPABILITY
R
G
= 25
50
PG.
L
V
DD
V
GS
= 20 V
0 V
BV
DSS
I
AS
I
D
V
DS
Starting T
ch
V
DD
D.U.T.
TEST CIRCUIT 3 GATE CHARGE
TEST CIRCUIT 2 SWITCHING TIME
PG.
R
G
0
V
GS
D.U.T.
R
L
V
DD
= 1 s
Duty Cycle
1%
V
GS
Wave Form
I
D
Wave Form
V
GS
10%
90%
V
GS
10%
0
I
D
90%
90%
t
d(on)
t
r
t
d(off)
t
f
10%
I
D
0
t
on
t
off
PG.
50
D.U.T.
R
L
V
DD
I
G
= 2 mA
Data Sheet D13335EJ1V0DS
3
2SK3112
TYPICAL CHARACTERISTICS (T
A
= 25C)
DRAIN CURRENT vs.
DRAIN TO SOURCE VOLTAGE
V
DS
- Drain to Source Voltage - V
I
D
- Drain Current - A
20
25
30
10
20
30
40
50
60
70
80
0
15
0
5
10
V
GS
= 10 V
Pulsed
GATE CUT-OFF VOLTAGE vs.
CHANNEL TEMPERATURE
T
ch
- Channel Temperature - C
V
GS(off)
- Gate Cut-off Voltage - V
V
DS
=
10
V
I
D
=
1
mA
-
50
0
150
50
100
5.0
4.0
3.0
2.0
1.0
-
25
25
75
125
Pulsed
DRAIN TO SOURCE ON-STATE RESISTANCE vs.
GATE TO SOURCE VOLTAGE
V
GS
- Gate to Source Voltage - V
R
DS(on)
- Drain to Source On-state Resistance -
0
8
16
20
4
12
I
D
= 25 A
13 A
5 A
0.5
0.4
0.3
0.2
0.1
0
DRAIN TO SOURCE ON-STATE RESISTANCE vs.
DRAIN CURRENT
I
D
- Drain Current - A
R
DS(on)
- Drain to Source On-state Resistance -
0.6
0.4
0.3
0.1
10
100
0.1
0
1
0.2
0.5
V
GS
= 10 V
Pulsed
FORWARD TRANSFER ADMITTANCE vs.
DRAIN CURRENT
|y
fs
| - Forward Transfer Admittance - S
I
D
- Drain Current - A
1
1
10
10
100
V
DS
= 10 V
Pulsed
T
ch
=
-
25C
25C
75C
125C
0.01
0.1
100
0.01
0.1
1000
100
10
1
0.1
0.01
0.001
0.0001
0
2
4
6
8
10
12
FORWARD TRANSFER CHARACTERISTICS
I
D
- Drain Current - A
V
GS
- Gate to Source Voltage - V
T
ch
= 125
C
75
C
25
C
-
25
C
V
DS
= 10 V
Pulsed
Data Sheet D13335EJ1V0DS
4
2SK3112
SOURCE TO DRAIN DIODE
FORWARD VOLTAGE
V
SD
- Source to Drain Voltage - V
I
SD
- Diode Forward Current - A
0
0.5
1.0
1.5
V
GS
= 10 V
0 V
Pulsed
100
10
1
0.1
0.01
CAPACITANCE vs. DRAIN TO
SOURCE VOLTAGE
V
DS
- Drain to Source Voltage - V
C
iss
, C
oss
, C
rss
- Capacitance - pF
0.1
100
1000
1
10
100
V
GS
=
0
V
f
=
1
MHz
C
iss
C
oss
C
rss
10
10000
1000
REVERSE RECOVERY TIME vs.
DIODE CURRENT
I
F
- Diode Current - A
t
rr
- Reverse Recovery Time - ns
0.1
10
1
10
100
100
1
1000
di/dt
=
50
A/
s
V
GS
=
0
V
SWITCHING CHARACTERISTICS
I
D
- Drain Current - A
t
d(on)
, t
r
, t
d(off)
, t
f
- Switching Time - ns
1
10
100
1000
0.1
1
10
100
V
DD
=
100 V
V
GS
=
10 V
R
G
=
10
t
d(off)
t
d(on)
t
f
t
r
V
GS
- Gate to Source Voltage - V
DYNAMIC INPUT/OUTPUT CHARACTERISTICS
Q
G
- Gate Charge - nC
V
DS
- Drain to Source Voltage - V
0
10
20
30
40
50
60
70
V
GS
V
DS
240
200
160
120
80
40
0
12
10
8
6
4
2
0
I
D
= 25 A
V
DD
= 160 V
100 V
40 V
DRAIN TO SOURCE ON-STATE RESISTANCE vs.
CHANNEL TEMPERATURE
50
150
R
DS (on)
- Drain to Source On-state Resistance - m
0
100
-
50
T
ch
- Channel Temperature - C
200
150
100
50
0
V
GS
= 10 V
Pulsed
13 A
I
D
= 25 A
Data Sheet D13335EJ1V0DS
5
2SK3112
DERATING FACTOR OF FORWARD BIAS
SAFE OPERATING AREA
T
ch
- Channel Temperature - C
dT - Percentage of Rated Power - %
0
20
40
60
80
100 120 140 160
20
40
60
80
100
0
TOTAL POWER DISSIPATION vs.
CASE TEMPERATURE
T
C
- Case Temperature - C
P
T
- Total Power Dissipation - W
0
20
40
60
80
100 120 140 160
140
120
100
80
60
40
20
0
FORWARD BIAS SAFE OPERATING AREA
10
100
1000
I
D
- Drain Current - A
1
V
DS
- Drain to Source Voltage - V
100
10
1
0.1
100
s
10
ms
1 ms
PW
= 10
s
R
DS
(on)
Limited
I
D(pulse)
I
D(DC)
3 ms
Po
wer Dissipation Limited
T
C
= 25C
Single Pulse
DC
TRANSIENT THERMAL RESISTANCE vs. PULSE WIDTH
PW - Pulse Width - sec
r
th
(t) - Transient Thermal Resistance -

C/
W
1
0.01
0.1
10
100
1 m
10 m
100 m
1
10
1000
100
100
Single Pulse
10
R
th(ch-A)
= 83.3C/W
R
th(ch-C)
= 1.25C/W