ChipFind - документация

Электронный компонент: UPA1700A

Скачать:  PDF   ZIP

Document Outline

1996
DATA SHEET
MOS FIELD EFFECT POWER TRANSISTORS
PA1700A
PACKAGE DIMENSIONS
(in millimeter)
DESCRIPTION
This product is N-Channel MOS Field Effect
Transistor designed for DC/DC converters and power
management of notebook computers.
FEATURES
Low On-Resistance
R
DS(on)1
= 27 m
Max. (V
GS
= 10 V, I
D
= 3.5 A)
R
DS(on)2
= 50 m
Max. (V
GS
= 4 V, I
D
= 3.5 A)
Low Input Capacitance
C
iss
= 820 pF Typ.
Built-in G-S Protection Diode
Small and Surface Mount Package
(Power SOP8)
SWITCHING
N-CHANNEL POWER MOS FET
INDUSTRIAL USE
Document No. G12008EJ1V0DS00 (1st edition)
Date Published April 1997 N
Printed in Japan
The information in this document is subject to change without notice.
ABSOLUTE MAXIMUM RATINGS (T
A
= 25 C, all terminals are connected)
Drain to Source Voltage
V
DSS
30
V
Gate to Source Voltage
V
GSS
20
V
Drain Current (DC)
I
D(DC)
7.0
A
Drain Current (pulse)
Note 1
I
D(pulse)
28
A
Total Power Dissipation (T
A
= 25
C)
Note 2
P
T
2.0
W
Channel Temperature
T
ch
150
C
Storage Temperature
T
stg
55 to +150
C
Notes 1. PW
10
s, Duty Cycle
1 %
2. Mounted on ceramic substrate of 1200 mm
2
1.7 mm
The diode connected between the gate and source of the transistor serves as a protector against ESD. When this
device acutally used, an additional protection circuit is externally required if voltage exceeding the rated voltage may
be applied to this device.
Source
Body
Diode
Gate
Protection
Diode
Gate
Drain
1.27
0.12 M
6.0 0.3
4.4
0.40
+0.10
0.05
0.78 MAX.
0.05 MIN.
1.8 MAX.
1.44
0.8
0.5 0.2
0.15
+0.10
0.05
5.37 MAX.
0.10
1
4
8
5
1, 2, 3
4
5, 6, 7, 8
; Source
; Gate
; Drain
2
PA1700A
ELECTRICAL CHARACTERISTICS (T
A
= 25 C, all terminals are connected)
CHARACTERISTICS
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
Drain to Source On-state Resistance
R
DS(on)1
V
GS
= 10 V, I
D
= 3.5 A
18
27
m
R
DS(on)2
V
GS
= 4 V, I
D
= 3.5 A
28
50
m
Gate to Source Cutoff Voltage
V
GS(off)
V
DS
= 10 V, I
D
= 1 mA
1.0
1.6
2.0
V
Forward Transfer Admittance
|y
fs
|
V
DS
= 10 V, I
D
= 3.5 A
5.0
9.0
S
Drain Leakage Current
I
DSS
V
DS
= 30 V, V
GS
= 0
10
A
Gate to Source Leakage Current
I
GSS
V
GS
=
20 V, V
DS
= 0
10
A
Input Capacitance
C
iss
V
DS
= 10 V
820
pF
Output Capacitance
C
oss
V
GS
= 0
350
pF
Reverse Transfer Capacitance
C
rss
f = 1 MHz
160
pF
Turn-On Delay Time
t
d(on)
I
D
= 3.5 A
18
ns
Rise Time
t
r
V
GS(on)
= 10 V
98
ns
Turn-Off Delay Time
t
d(off)
V
DD
= 15 V
57
ns
Fall Time
t
f
R
G
= 10
32
ns
Total Gate Charge
Q
G
I
D
= 7.0 A
20
nC
Gate to Source Charge
Q
GS
V
DD
= 24 V
2.4
nC
Gate to Drain Charge
Q
GD
V
GS
= 10 V
5.6
nC
Body Diode Forward Voltage
V
F(S-D)
I
F
= 7.0 A, V
GS
= 0
0.79
V
Reverse Recovery Time
t
rr
I
F
= 7.0 A, V
GS
= 0
36
ns
Reverse Recovery Charge
Q
rr
di/dt = 100 A/
s
35
nC
Test Circuit 1 Switching Time
Test Circuit 2 Gate Charge
PG.
R
G
0
V
GS
D.U.T.
R
L
V
DD
t = 1 s
Duty Cycle
1 %
V
GS
Wave Form
I
D
Wave Form
V
GS
10 %
90 %
V
GS(on)
10 %
0
I
D
90 %
90 %
t
d(on)
t
r
t
d(off)
t
f
10 %
t
R
G
= 10
I
D
0
t
on
t
off
PG.
50
D.U.T.
R
L
V
DD
I
G
= 2 mA
3
PA1700A
FORWARD BIAS SAFE OPERATING AREA
V
DS -
Drain to Source Voltage - V
I
D
- Drain Current - A
DERATING FACTOR OF FORWARD BIAS
SAFE OPERATING AREA
T
A
- Ambient Temperature - C
dT - Percentage of Rated Power - %
TOTAL POWER DISSIPATION vs.
AMBIENT TEMPERATURE
T
A
- Ambient Temperature - C
P
T
- Total Power Dissipation - W
0
20
0
20
40
60
80
100
120
140
160
20
40
60
80
100
40
60
80
100
120
140
160
2.8
2.4
2.0
1.6
1.2
0.8
0.4
0.1
0.1
1
10
100
1
10
100
T
A
= 25 C
Single Pulse
Mounted on ceramic
substrate of
1200 mm
2
1.7 mm
1 ms
Power Dissipation Limited
100 ms
I
D(DC)
= 7 A
10 ms
I
D(pulse)
= 28 A
Note
Mounted on ceramic substrate of 1200 mm
2
1.7 mm
RDS(on) Limited
(at V
GS
= 10 V)
TRANSIENT THERMAL RESISTANCE vs. PULSE WIDTH
PW - Pulse Width - s
r
th(t)
- Transient Thermal Resistance - C/
W
10
0.001
0.01
0.1
1
100
1 000
10 m
100 m
1
10
100
1000
10 000
100
1m
Single Pulse
Mounted on ceramic
substrate of
1200 mm to 1.7 mm
Single Pulse
Channel to Ambient
2
4
PA1700A
FORWARD TRANSFER ADMITTANCE vs.
DRAIN CURRENT
I
D
- Drain Current - A
| y
fs
| - Forward Transfer Admittance - S
DRAIN TO SOURCE ON-STATE RESISTANCE vs.
GATE TO SOURCE VOLTAGE
V
GS
- Gate to Source Voltage - V
R
DS(on)
- Drain to Source On-State Resistance - m
0
5
DRAIN TO SOURCE ON-STATE
RESISTANCE vs. DRAIN CURRENT
GATE TO SOURCE CUTOFF VOLTAGE vs.
CHANNEL TEMPERATURE
T
ch
- Channel Temperature - C
V
GS(off)
- Gate to Source Cutoff Voltage - V
I
D
- Drain Current - A
R
DS(on)
- Drain to Source On-State Resistance - m
10
1
V
DS
= 10 V
Pulsed
0.1
1
1
10
100
10
100
50
10
15
Pulsed
20
10
100
Pulsed
0
V
DS
= 10 V
I
D
= 1 mA
20
0
40
100
140
0
1.0
2.0
150
100
30
V
GS
=10 V
V
GS
= 4 V
T
ch
= 25 C
25 C
75 C
125 C
DRAIN CURRENT vs.
DRAIN TO SOURCE VOLTAGE
V
DS
- Drain to Source Voltage - V
I
D
- Drain Current - A
FORWARD TRANSFER CHARACTERISTICS
V
GS
- Gate to Source Voltage - V
I
D
- Drain Current - A
0.1
0
0.4
0.6
0.8
10
1
10
100
Pulsed
0.2
0
Pulsed
2
V
GS
= 10 V
4 V
4
T
ch
= 125 C
75 C
25 C
25 C
6
8
20
V
DS
= 10 V
50
60
40
70
20
60
80
120
I
D
= 3.5 A
5
PA1700A
DRAIN TO SOURCE ON-STATE RESISTANCE vs.
CHANNEL TEMPERATURE
T
ch
- Channel Temperature - C
R
DS(on)
- Drain to Source On-State Resistance - m
SOURCE TO DRAIN DIODE
FORWARD VOLTAGE
V
SD
- Source to Drain Voltage - V
I
SD
- Diode Forward Current - A
CAPACITANCE vs. DRAIN TO
SOURCE VOLTAGE
V
DS
- Drain to Source Voltage - V
C
iss
, C
oss
, C
rss
- Capacitance - pF
SWITCHING CHARACTERISTICS
I
D
- Drain Current - A
t
d(on)
, t
r
, t
d(off)
, t
f
- Switching Time - ns
1
0.1
0
20
0
40
80
120
I
D
= 3.5 A
0.1
0
1
10
100
0.5
Pulsed
10
0.1
100
1 000
10 000
1
10
100
V
GS
= 0
f = 1 MHz
10
100
1 000
1
10
100
V
GS
- Gate to Source Voltage - V
REVERSE RECOVERY TIME vs.
DRAIN CURRENT
I
F
- Diode Current - A
t
rr
- Reverse Recovery Time - ns
di/dt = 100 A/ s
V
GS
= 0
1
0.1
10
1
10
100
1.0
1.5
V
DD
= 15 V
V
GS(on)
= 10 V
R
G
= 10
DYNAMIC INPUT/OUTPUT CHARACTERISTICS
Q
G
- Gate Charge - nC
V
DS
- Drain to Source Voltage - V
0
5
10
15
20
10
20
30
40
2
4
6
8
0
20
40
V
GS
= 4 V
10 V
C
iss
C
oss
C
rss
V
DD
= 24 V
15 V
6 V
V
GS
V
DS
t
d(off)
t
d(on)
t
r
t
f
V
GS
= 10 V
1 000
100
12
14
10
I
D
= 7 A
30
10
20
60
100
V
GS
= 0