ChipFind - документация

Электронный компонент: BAT54SL

Скачать:  PDF   ZIP
Publication Order Number:
BAT54SLT1/D
Semiconductor Components Industries, LLC, 2000
November, 2000 Rev. 6
BAT54SLT1
Preferred Device
Dual Series Schottky
Barrier Diodes
These Schottky barrier diodes are designed for high speed switching
applications, circuit protection, and voltage clamping. Extremely low
forward voltage reduces conduction loss. Miniature surface mount
package is excellent for hand held and portable applications where
space is limited.
Extremely Fast Switching Speed
Low Forward Voltage 0.35 Volts (Typ) @ I
F
= 10 mAdc
MAXIMUM RATINGS
(T
J
= 125
C unless otherwise noted)
Rating
Symbol
Value
Unit
Reverse Voltage
V
R
30
Volts
Forward Power Dissipation
@ T
A
= 25
C
Derate above 25
C
P
F
225
1.8
mW
mW/
C
Forward Current (DC)
I
F
200 Max
mA
Junction Temperature
T
J
125 Max
C
Storage Temperature Range
T
stg
55 to +150
C
30 VOLT
DUAL HOTCARRIER
DETECTOR AND SWITCHING
DIODES
3
CATHODE/ANODE
1
ANODE
2
CATHODE
Device
Package
Shipping
ORDERING INFORMATION
BAT54SLT1
SOT23
3000/Tape & Reel
http://onsemi.com
(TO236AB)
SOT23
CASE 318
STYLE 11
Preferred devices are recommended choices for future use
and best overall value.
MARKING
DIAGRAM
3
1
2
LD3
1
2
3
BAT54SLT1
http://onsemi.com
2
ELECTRICAL CHARACTERISTICS
(T
A
= 25
C unless otherwise noted) (EACH DIODE)
Characteristic
Symbol
Min
Typ
Max
Unit
Reverse Breakdown Voltage (I
R
= 10
A)
V
(BR)R
30
Volts
Total Capacitance (V
R
= 1.0 V, f = 1.0 MHz)
C
T
7.6
10
pF
Reverse Leakage (V
R
= 25 V)
I
R
0.5
2.0
Adc
Forward Voltage (I
F
= 0.1 mAdc)
V
F
0.22
0.24
Vdc
Forward Voltage (I
F
= 30 mAdc)
V
F
0.41
0.5
Vdc
Forward Voltage (I
F
= 100 mAdc)
V
F
0.52
0.8
Vdc
Reverse Recovery Time
(I
F
= I
R
= 10 mAdc, I
R(REC)
= 1.0 mAdc, Figure 1)
t
rr
5.0
ns
Forward Voltage (I
F
= 1.0 mAdc)
V
F
0.29
0.32
Vdc
Forward Voltage (I
F
= 10 mAdc)
V
F
0.35
0.40
Vdc
Forward Current (DC)
I
F
200
mAdc
Repetitive Peak Forward Current
I
FRM
300
mAdc
NonRepetitive Peak Forward Current (t < 1.0 s)
I
FSM
600
mAdc
BAT54SLT1
http://onsemi.com
3
C
T
, T
O
A
T
AL CAP
ACIT
ANCE (pF)
Notes: 1. A 2.0 k
variable resistor adjusted for a Forward Current (I
F
) of 10 mA.
Notes:
2. Input pulse is adjusted so I
R(peak)
is equal to 10 mA.
Notes:
3. t
p
t
rr
+10 V
2 k
820
0.1
F
DUT
V
R
100
H
0.1
F
50
OUTPUT
PULSE
GENERATOR
50
INPUT
SAMPLING
OSCILLOSCOPE
t
r
t
p
T
10%
90%
I
F
I
R
t
rr
T
i
R(REC)
= 1 mA
OUTPUT PULSE
(I
F
= I
R
= 10 mA; measured
at i
R(REC)
= 1 mA)
I
F
INPUT SIGNAL
Figure 1. Recovery Time Equivalent Test Circuit
100
0.0
0.1
V
F
, FORWARD VOLTAGE (VOLTS)
0.2
0.3
0.4
0.5
10
1.0
0.1
85
C
10
0
V
R
, REVERSE VOLTAGE (VOLTS)
1.0
0.1
0.01
0.001
5
10
15
20
25
14
0
V
R
, REVERSE VOLTAGE (VOLTS)
12
4
2
0
5
10
15
30
Figure 2. Forward Voltage
Figure 3. Leakage Current
Figure 4. Total Capacitance
40
C
25
C
T
A
= 150
C
T
A
= 125
C
T
A
= 85
C
T
A
= 25
C
0.6
55
C
150
C
125
C
100
1000
30
25
20
6
8
10
I
R
, REVERSE CURRENT (
A)
I
F
, FOR
W
ARD CURRENT (mA)
BAT54SLT1
http://onsemi.com
4
INFORMATION FOR USING THE SOT23 SURFACE MOUNT PACKAGE
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS
Surface mount board layout is a critical portion of the total
design. The footprint for the semiconductor packages must
be the correct size to insure proper solder connection
interface between the board and the package. With the
correct pad geometry, the packages will self align when
subjected to a solder reflow process.
SOT23
mm
inches
0.037
0.95
0.037
0.95
0.079
2.0
0.035
0.9
0.031
0.8
SOT23 POWER DISSIPATION
The power dissipation of the SOT23 is a function of the
drain pad size. This can vary from the minimum pad size for
soldering to a pad size given for maximum power
dissipation. Power dissipation for a surface mount device is
determined by T
J(max)
, the maximum rated junction
temperature of the die, R
JA
, the thermal resistance from the
device junction to ambient, and the operating temperature,
T
A
. Using the values provided on the data sheet for the
SOT23 package, P
D
can be calculated as follows:
P
D
=
T
J(max)
T
A
R
JA
The values for the equation are found in the maximum
ratings table on the data sheet. Substituting these values into
the equation for an ambient temperature T
A
of 25
C, one can
calculate the power dissipation of the device which in this
case is 225 milliwatts.
P
D
=
150
C 25
C
556
C/W
= 225 milliwatts
The 556
C/W for the SOT23 package assumes the use of
the recommended footprint on a glass epoxy printed circuit
board to achieve a power dissipation of 225 milliwatts.
There are other alternatives to achieving higher power
dissipation from the SOT23 package. Another alternative
would be to use a ceramic substrate or an aluminum core
board such as Thermal Clad
TM
. Using a board material such
as Thermal Clad, an aluminum core board, the power
dissipation can be doubled using the same footprint.
SOLDERING PRECAUTIONS
The melting temperature of solder is higher than the rated
temperature of the device. When the entire device is heated
to a high temperature, failure to complete soldering within
a short time could result in device failure. Therefore, the
following items should always be observed in order to
minimize the thermal stress to which the devices are
subjected.
Always preheat the device.
The delta temperature between the preheat and
soldering should be 100
C or less.*
When preheating and soldering, the temperature of the
leads and the case must not exceed the maximum
temperature ratings as shown on the data sheet. When
using infrared heating with the reflow soldering
method, the difference shall be a maximum of 10
C.
The soldering temperature and time shall not exceed
260
C for more than 10 seconds.
When shifting from preheating to soldering, the
maximum temperature gradient shall be 5
C or less.
After soldering has been completed, the device should
be allowed to cool naturally for at least three minutes.
Gradual cooling should be used as the use of forced
cooling will increase the temperature gradient and
result in latent failure due to mechanical stress.
Mechanical stress or shock should not be applied
during cooling.
* Soldering a device without preheating can cause
excessive thermal shock and stress which can result in
damage to the device.
BAT54SLT1
http://onsemi.com
5
PACKAGE DIMENSIONS
D
J
K
L
A
C
B S
H
G
V
3
1
2
DIM
A
MIN
MAX
MIN
MAX
MILLIMETERS
0.1102 0.1197
2.80
3.04
INCHES
B 0.0472 0.0551
1.20
1.40
C 0.0350 0.0440
0.89
1.11
D 0.0150 0.0200
0.37
0.50
G 0.0701 0.0807
1.78
2.04
H 0.0005 0.0040
0.013
0.100
J 0.0034 0.0070
0.085
0.177
K 0.0140 0.0285
0.35
0.69
L 0.0350 0.0401
0.89
1.02
S 0.0830 0.1039
2.10
2.64
V 0.0177 0.0236
0.45
0.60
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD
FINISH THICKNESS. MINIMUM LEAD THICKNESS
IS THE MINIMUM THICKNESS OF BASE
MATERIAL.
(TO236AB)
SOT23
PLASTIC PACKAGE
CASE 31808
ISSUE AE
STYLE 11:
PIN 1. ANODE
2. CATHODE
3. CATHODE-ANODE
BAT54SLT1
http://onsemi.com
6
Notes
BAT54SLT1
http://onsemi.com
7
Notes
BAT54SLT1
http://onsemi.com
8
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be
validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
CENTRAL/SOUTH AMERICA:
Spanish Phone: 3033087143 (MonFri 8:00am to 5:00pm MST)
Email: ONlitspanish@hibbertco.com
TollFree from Mexico: Dial 018002882872 for Access
then Dial 8662979322
ASIA/PACIFIC: LDC for ON Semiconductor Asia Support
Phone: 3036752121 (TueFri 9:00am to 1:00pm, Hong Kong Time)
Toll Free from Hong Kong & Singapore:
00180044223781
Email: ONlitasia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4321 NishiGotanda, Shinagawaku, Tokyo, Japan 1410031
Phone: 81357402700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
BAT54SLT1/D
Thermal Clad is a registered trademark of the Bergquist Company.
NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 3036752175 or 8003443860 Toll Free USA/Canada
Fax: 3036752176 or 8003443867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line: 3036752167 or 8003443810 Toll Free USA/Canada
N. American Technical Support: 8002829855 Toll Free USA/Canada
EUROPE: LDC for ON Semiconductor European Support
German Phone: (+1) 3033087140 (MonFri 2:30pm to 7:00pm CET)
Email: ONlitgerman@hibbertco.com
French Phone: (+1) 3033087141 (MonFri 2:00pm to 7:00pm CET)
Email: ONlitfrench@hibbertco.com
English Phone: (+1) 3033087142 (MonFri 12:00pm to 5:00pm GMT)
Email: ONlit@hibbertco.com
EUROPEAN TOLLFREE ACCESS*: 0080044223781
*Available from Germany, France, Italy, UK, Ireland